Lecture-16: Invariant Distribution

1 Transient and recurrent states

1.1 Hitting and return times

Definition 1.1. For a homogeneous Markov chain X : Q2 — X%+, we can define first hitting time to state
x € X,as
+ 4 . —
T, =inf{n e N: X, = x}.

If Xy = x, then 7, is called the first return time to state x.

Lemma 1.2. For an irreducible Markov chain X : Q — X%+ on finite state space X, we have lEij < oo for all
states x,y € X.

Proof. From the definition of irreducibility, for each pair of states z,w € X, we have a positive integer
N, € IN such that p?é,w > € > 0. Since the state space X is finite, We define

A . A
€= Inf €5y >0, 7= sup Mz € N.
Zwe z,weEX

(n)

Hence, there exists a positive integer ¥ € IN and a real € > 0 such that p;;/ > € for some n < r and all
states z,w € X. It follows that P(U,c;) {Xn =y}) > € or P: {Ty* > r} < 1 — € for any initial condition
Xop = z € X. Therefore, we can write for k € IN

PX{T;_>kT}:Px {T;“>(k—1)r}P({Ty+>kr}|{Ty+>(k—l)r,onx})é(l—e)Px{T;>(k—1)r}.

By induction, we have Py {Tj > kr} <(1- e)k. Since Py {Ter > n} is decreasing in n, we can write

r—1
. r
Bt = ), ) Po{r) >hkr+i} < ) rP{t) >kr} < S <.
keZ i=0 keZ

O

Corollary 1.3. For an irreducible Markov chain X : Q — X%+ on finite state space X, we have Py {Ter < oo} =1
for all states x,y € X.

Proof. This follows from the fact that Ty+ is a positive random variable with finite mean for all states
y € X and any initial state x € X. O

1.2 Recurrence and transience

Definition 1.4. Let fJE;) denote the probability that starting from state x, the first transition into state y

happens at time #n. Then, fﬁg) =Py {Tj = n} . Then we denote the probability of eventually entering

state y given that we start at state x, as fo, = )7 ¢ f,g; ) = Py {Ter < oo} . The state y is said to be transient

if fyy <1and recurrent if f,, = 1.

Definition 1.5. For a discrete time process X : Q) — X%+, the total number of visits to a state y € X in
first n steps is denoted by Ny(n) £ Y/ |1 (x;=y}- Total number of visits to state y € X is denoted by

Ny £ Ny(c0).

Remark 1. From the linearity of expectations and monotone convergence theorem, we get EyN, =

ZnE]N Pé;) .



Lemma 1.6. Consider a homogeneous Markov chain X : Q — X%+, For each m € Z. and state x,y € X, we
have
1— fay m=0,

Px{Ny = m} = {fxyfyn;_l(l _fyy) meN.

Proof. For each k € IN, the time 1.';r (k) of the kth visit to the state y is a stopping time. From strong

Markov property, the next return to state y is independent of the past. That is, (7, (k+1) — 7, (k) :

k € N) is an i.i.d. sequence, distributed identically to Ter starting from an initial state Xo = y. When
Xo = x # y, then 7,/ is independent of sequence (7,7 (k+ 1) — 7, (k) : k € N) and distributed differently.
We observe that

(N, =m}= {T;(m) < oo, 7f (m + 1) :oo} =N, {T;(k) —th(k—1) < oo}m {r;(m+1) — 7 (m) :oo}.

It follows from the strong Markov property for process X, that

Pe{Ny =m} =P {7 (1) < oo}f[zpy{r;(k) — 7 (k=1) <o} B, {7 (m+1) =co}.

Corollary 1.7. For a homogeneous Markov chain X : Q — X%+, we have Py{Ny <o} = ]l{fyy<1}'

Proof. We can write the event {N,, < oo} as the disjoint union of events { N, = m} for m € Z, and the
result follows from additivity of probability over disjoint events, and the expression for the conditional
probability mass function P, {N, = m} in Lemma O

Remark 2. In particular, this corollary implies the following.
1. A transient state is visited a finite amount of times almost surely.
2. A recurrent state is visited infinitely often almost surely.
3. Since ) cx Ny = o0, it follows that all states can be transient in a finite state Markov chain.

Proposition 1.8. A state y € X is recurrent iff Y jeN pg;) = o0.

Proof. For any state y € X, we can write
*) — P {X, =y} = E,1
Pyy =ik =Ys = Bxl{X=y}-
Using monotone convergence theorem to exchange expectation and summation, we obtain

k
). F’;y) =Ey ) L{x—y} = EyNy.
keIN keIN

Thus, } jen p;];) represents the expected number of returns [E, Ny, to a state y starting from state y, which
we know to be finite if the state is transient and infinite if the state is recurrent. O

Proposition 1.9. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let x be a recurrent state and let x <> v.

Then, we will show that y is a recurrent state. From the reachability, there exist some m,1 > 0, such that

p,g;) > 0and p%) > 0. As a consequence of the recurrence, } ez, p,(fx) = o0. It follows that y is recurrent

by observing
Loow> Loz L oppidpy) = oo

keZ SEZ 4 SEZ 4

Now, if x were transient instead, we conclude that y is also transient by the following observation

(m+n+s)
(s) _ Lsez, Pxx
Lo STy <
SEZ Pyx' Pxy

Corollary 1.10. Ify is recurrent, then for any state x such that x <>y, fxy = 1.



2 Invariant distribution

Definition 2.1. For a time-homogeneous Markov chain X : QO — X%+ with transition matrix P, a distri-
bution 7t € M(X) is called invariant if it is a left eigenvector of the probability transition matrix P with
eigenvalue unity, or

T =rmP.

Remark 3. Recall that v(n) € M(X) where vy(n) = P{X,, = x} for all x € X, denotes the probability
distribution of the Markov chain X being in one of the states at step n € IN. Then, if 1/(0) = 1, then
v(n) = v(0)P" = r for all time-steps n € IN.

Definition 2.2. For a time-homogeneous Markov chain X : Q) — X%+ with transition matrix P, the
stationary distribution is defined as v(c0) £ limy, 0 v(1).

Remark 4. For a Markov chain with initial distribution being invariant, the stationary distribution is
invariant distribution.

Example 2.3 (Simple random walk on a directed graph). Let G = (V,E) be a finite directed graph.
We define a simple random walk on this graph as a Markov chain with state space V' and transition
matrix P: V x V — [0,1] where py, = ml{(w)@f}' We observe that vector (deg_,,(x) : x € X)
is a left eigenvector of the transition matrix P with unit eigenvalue. Indeed we can very that

Y deg, (X)pxy = Y Li(xy)er) = degoy(¥)-
xeX

xeX

Since Y, < deg, . (x) = 2|E|, it follows that 7 : X — [0,1] defined by 7, £ degz“"gl(x) foreachx € V,

is the equilibrium distribution of this simple random walk.

2.1 Existence of an invariant distribution

Proposition 2.4. Consider an irreducible and aperiodic homogeneous DTMC X : Q — X%+ with transition
matrix P and starting from initial state Xy = x. Let the positive vector 7ty : X — Ry defined as

T+

Ty (y ]Ex Z ]I{Xn—y} —]Ex Z ]l{n<T+}]1{Xn—y}’ ye X.

Then 7ty = 7txPif Py {1 < oo} =1,and m = is a stationary distribution if Ex T < 0.

IEY X
Proof. We will first show that 77 is a distribution on state space X. We first observe that

+

Z (y) = Z Z ]l{Xn =y} — Z ]l{X exy = ]ExT;_-

yeX yeX n=1

Thus 77y (y) = Ex sz; Lx,—y < Ex7y forall states y € X. If Ex7;" < oo, then 7+ (y) < oo for each y € X.

Ty

Further, we have 7x(x) = 1. Since 7x(y) > 0, it follows that ™

is a distribution on the state space X.

We next show that 7y is an invariant distribution of DTMC X. Using the monotone convergence
theorem, we can write

Y @z = 1 L PoAT =0, X =0} P({Xus1 = 2} | {Xu = 0}).

weX neNweX

We first focus on the term w = x. We see that {Xn =x,78 2 n} = {1ty =n}. Hence, from the strong
Markov property, we have Py { X, = x, X411 = 2,78 = n} = Px{ty" =n} py.. Summing over alln € N,

we get
( Pxz = ZPX{anxXanZT n}*szZPx{T *7’1} Pxz-
nelN nelN



We next focus on the terms w # x, such that {X,, = w, 7 >n} ={X, =w, 7 >n+1} € F,. Hence,
from the Markov property of X, we can write

Pt 2n+1,Xp=w X1 =2} =P {1ty >nXy=w}P{Xy11 =z} | {Xn=w,1] >nXo=x})
_Px{T zn /Xn:w}r)wz-

Summing both sides over n € IN and w # x, we get

Yo ()pwz= Y, Y P{ti 2n+1Xu=wXyp1=2} =) Pt >nX, =2z}

wx neNw#x =5
= 7tx(z) — Px {T;r 21X = Z} = 7tx(2) = Paz-
The result follows from summing both the cases. L)

2.2 Uniqueness of stationary distribution

Recall that distributions 7r on state space X such that 7P = 7 is called a stationary distribution. Similarly,
a function i : X — R is called harmonic at x if

x) = Z Pxyh(y)

yeX

A function is harmonic on a subset D C X if it is harmonic at every state x € D. That is, Ph =k for a
function harmonic on the entire state space X.

Lemma 2.5. For a finite irreducible Markov chain, a function f that is harmonic on all states in X is a constant.

Proof. Suppose h is not a constant, then there exists a state xg € X, such that h(xo) > h(y) for all states
y € X. Since the Markov chain is irreducible, there exists a state z € X such that py, . > 0. Let’s assume
h(z) < h(xp), then
h(x0) = pxozh(2) + Y Proyh(y) < h(xo).
y#z

This implies that /1(xg) = h(z) for all states z such that py,. > 0. By induction, this implies that any
h(xg) = h(y) for any states y reachable from state xp. Since all states are reachable from state xo by
irreducibility, this implies / is a constant on the state space X. O

Corollary 2.6. For any irreducible and aperiodic finite Markov chain, there exists a unique stationary distribu-
tion 7.

Proof. For an aperiodic and irreducible DTMC X : () — XZ+ with finite state space X, we have Py {Ty+ < oo} =

1 and ]ExTer < oo for all states x,y € X. Therefore, we have seen the existence of a positive stationary
distribution 77 for an irreducible and aperiodic finite Markov chain. Further, from previous Lemma we
have that the dimension of null-space of (P — I is unity. Hence, the rank of P — I is |X| — 1. Therefore,
all vectors satisfying v = vP are scalar multiples of 7. O

2.3 Stationary distribution for irreducible and aperiodic finite DTMC

For a finite state irreducible and aperiodic DTMC X : () — X%+, we have E ij < oo and Py {Ty < oo} =1
for all x,yy € X. That is, the return times are finite almost surely, and hence we can apply strong Markov
property at these stopping times to obtain that DTMC X is a regenerative process with delayed renewal

sequence 7,7 : Q0 — NN, where 7/ (0) £ 0, and 7 (n) £ inf{m >1f(n—1): Xy = y}.
Theorem 2.7. For a finite state irreducible and aperiodic Markov chain X : Q) — X%+, its invariant distribution
is same as its stationary distribution.

Proof. We can create an on-off alternating renewal function on this DTMC X, which is ON when in state
y. Then, from the limiting ON probability of alternating renewal function, we know that

. L
m(y) = lim Pe{Xy =y} = lim le{xk —y) =

n—oo n

We observe that 7(y) = ;y (Tyj for each state y € X. From the uniqueness of invariant distribution, it
vy
follows that 7t is the unique invariant distribution of the DTMC X. We observe that 77(x) is the long-

term average of the amount of time spent in state x and from renewal reward theorem 71(x) = ,lﬁ . g
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