
Lecture-16: Invariant Distribution

1 Transient and recurrent states

1.1 Hitting and return times

Definition 1.1. For a homogeneous Markov chain X : Ω →XZ+ , we can define first hitting time to state
x ∈ X, as

τ+
x ≜ inf{n ∈ N : Xn = x} .

If X0 = x, then τ+
x is called the first return time to state x.

Lemma 1.2. For an irreducible Markov chain X : Ω → XZ+ on finite state space X, we have Exτ+
y < ∞ for all

states x,y ∈ X.

Proof. From the definition of irreducibility, for each pair of states z,w ∈ X, we have a positive integer
nzw ∈ N such that pnzw

zw > ϵzw > 0. Since the state space X is finite, We define

ϵ ≜ inf
z,w∈X

ϵzw > 0, r ≜ sup
z,w∈X

nzw ∈ N.

Hence, there exists a positive integer r ∈ N and a real ϵ > 0 such that p(n)zw > ϵ for some n ⩽ r and all
states z,w ∈ X. It follows that P(∪n∈[r] {Xn = y}) > ϵ or Pz

{
τ+

y > r
}
⩽ 1 − ϵ for any initial condition

X0 = z ∈ X. Therefore, we can write for k ∈ N

Px

{
τ+

y > kr
}
= Px

{
τ+

y > (k − 1)r
}

P(
{

τ+
y > kr

}
|
{

τ+
y > (k − 1)r, X0 = x

}
)⩽ (1− ϵ)Px

{
τ+

y > (k − 1)r
}

.

By induction, we have Px

{
τ+

y > kr
}
⩽ (1 − ϵ)k. Since Px

{
τ+

y > n
}

is decreasing in n, we can write

Exτ+
y = ∑

k∈Z+

r−1

∑
i=0

Px{τ+
y > kr + i}⩽ ∑

k∈Z+

rPx{τ+
y > kr}⩽ r

ϵ
< ∞.

Corollary 1.3. For an irreducible Markov chain X : Ω →XZ+ on finite state space X, we have Px

{
τ+

y < ∞
}
= 1

for all states x,y ∈ X.

Proof. This follows from the fact that τ+
y is a positive random variable with finite mean for all states

y ∈ X and any initial state x ∈ X.

1.2 Recurrence and transience

Definition 1.4. Let f (n)xy denote the probability that starting from state x, the first transition into state y

happens at time n. Then, f (n)xy = Px

{
τ+

y = n
}

. Then we denote the probability of eventually entering

state y given that we start at state x, as fxy = ∑∞
n=1 f (n)xy = Px

{
τ+

y < ∞
}

. The state y is said to be transient
if fyy < 1 and recurrent if fyy = 1.

Definition 1.5. For a discrete time process X : Ω → XZ+ , the total number of visits to a state y ∈ X in
first n steps is denoted by Ny(n) ≜ ∑n

i=11{Xi=y}. Total number of visits to state y ∈ X is denoted by
Ny ≜ Ny(∞).

Remark 1. From the linearity of expectations and monotone convergence theorem, we get EyNy =

∑n∈N p(n)yy .
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Lemma 1.6. Consider a homogeneous Markov chain X : Ω → XZ+ . For each m ∈ Z+ and state x,y ∈ X, we
have

Px
{

Ny = m
}
=

{
1 − fxy m = 0,
fxy f m−1

yy (1 − fyy) m ∈ N.

Proof. For each k ∈ N, the time τ+
y (k) of the kth visit to the state y is a stopping time. From strong

Markov property, the next return to state y is independent of the past. That is, (τ+
y (k + 1) − τ+

y (k) :
k ∈ N) is an i.i.d. sequence, distributed identically to τ+

y starting from an initial state X0 = y. When
X0 = x ̸= y, then τ+

y is independent of sequence (τ+
y (k + 1)− τ+

y (k) : k ∈ N) and distributed differently.
We observe that{

Ny = m
}
=

{
τ+

y (m) < ∞,τ+
y (m + 1) = ∞

}
=∩m

k=1

{
τ+

y (k)− τ+
y (k − 1) < ∞

}
∩
{

τ+
y (m + 1)− τ+

y (m) = ∞
}

.

It follows from the strong Markov property for process X, that

Px
{

Ny = m
}
= Px

{
τ+

y (1) < ∞
} m

∏
k=2

Py

{
τ+

y (k)− τ+
y (k − 1) < ∞

}
Py

{
τ+

y (m + 1) = ∞
}

.

Corollary 1.7. For a homogeneous Markov chain X : Ω → XZ+ , we have Py
{

Ny < ∞
}
= 1{ fyy<1}.

Proof. We can write the event
{

Ny < ∞
}

as the disjoint union of events
{

Ny = m
}

for m ∈ Z+, and the
result follows from additivity of probability over disjoint events, and the expression for the conditional
probability mass function Py

{
Ny = m

}
in Lemma 1.6.

Remark 2. In particular, this corollary implies the following.

1. A transient state is visited a finite amount of times almost surely.

2. A recurrent state is visited infinitely often almost surely.

3. Since ∑y∈X Ny = ∞, it follows that all states can be transient in a finite state Markov chain.

Proposition 1.8. A state y ∈ X is recurrent iff ∑k∈N p(k)yy = ∞.

Proof. For any state y ∈ X, we can write

p(k)yy = Px {Xk = y} = Ex1{Xk=y}.

Using monotone convergence theorem to exchange expectation and summation, we obtain

∑
k∈N

p(k)yy = Ey ∑
k∈N

1{Xk=y} = EyNy.

Thus, ∑k∈N p(k)yy represents the expected number of returns EyNy to a state y starting from state y, which
we know to be finite if the state is transient and infinite if the state is recurrent.

Proposition 1.9. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let x be a recurrent state and let x ↔ y.
Then, we will show that y is a recurrent state. From the reachability, there exist some m,n > 0, such that
p(m)

xy > 0 and p(n)yx > 0. As a consequence of the recurrence, ∑s∈Z+
p(s)xx = ∞. It follows that y is recurrent

by observing

∑
k∈Z+

p(k)yy ⩾ ∑
s∈Z+

p(m+n+s)
yy ⩾ ∑

s∈Z+

p(n)yx p(s)xx p(m)
xy = ∞.

Now, if x were transient instead, we conclude that y is also transient by the following observation

∑
s∈Z+

p(s)yy ⩽
∑s∈Z+

p(m+n+s)
xx

p(n)yx p(m)
xy

< ∞.

Corollary 1.10. If y is recurrent, then for any state x such that x ↔ y, fxy = 1.
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2 Invariant distribution

Definition 2.1. For a time-homogeneous Markov chain X : Ω → XZ+ with transition matrix P, a distri-
bution π ∈M(X) is called invariant if it is a left eigenvector of the probability transition matrix P with
eigenvalue unity, or

π = πP.

Remark 3. Recall that ν(n) ∈ M(X) where νx(n) = P{Xn = x} for all x ∈ X, denotes the probability
distribution of the Markov chain X being in one of the states at step n ∈ N. Then, if ν(0) = π, then
ν(n) = ν(0)Pn = π for all time-steps n ∈ N.

Definition 2.2. For a time-homogeneous Markov chain X : Ω → XZ+ with transition matrix P, the
stationary distribution is defined as ν(∞)≜ limn→∞ ν(n).

Remark 4. For a Markov chain with initial distribution being invariant, the stationary distribution is
invariant distribution.

Example 2.3 (Simple random walk on a directed graph). Let G = (V, E) be a finite directed graph.
We define a simple random walk on this graph as a Markov chain with state space V and transition
matrix P : V × V → [0,1] where pxy ≜ 1

degout(x)1{(x,y)∈E}. We observe that vector (degout(x) : x ∈ X)

is a left eigenvector of the transition matrix P with unit eigenvalue. Indeed we can very that

∑
x∈X

degout(x)pxy = ∑
x∈X

1{(x,y)∈E} = degout(y).

Since ∑x∈X degout(x) = 2|E|, it follows that π : X→ [0,1] defined by πx ≜
degout(x)

2|E| for each x ∈ V,
is the equilibrium distribution of this simple random walk.

2.1 Existence of an invariant distribution

Proposition 2.4. Consider an irreducible and aperiodic homogeneous DTMC X : Ω → XZ+ with transition
matrix P and starting from initial state X0 = x. Let the positive vector π̃x : X→ R+ defined as

π̃x(y)≜ Ex

τ+x

∑
n=1

1{Xn=y} = Ex ∑
n∈N

1{n⩽τ+x }1{Xn=y}, y ∈ X.

Then π̃x = π̃xP if Px {τ+
x < ∞} = 1, and π ≜ π̃x

Exτ+x
is a stationary distribution if Exτ+

x < ∞.

Proof. We will first show that π is a distribution on state space X. We first observe that

∑
y∈X

π̃x(y) = ∑
y∈X

τ+x

∑
n=1

1{Xn=y} =
τ+x

∑
n=1

1{Xn∈X} = Exτ+
x .

Thus π̃x(y) = Ex ∑τ+x
n=11{Xn=y} ⩽ Exτ+

x for all states y ∈ X. If Exτ+
x < ∞, then π̃x(y)< ∞ for each y ∈ X.

Further, we have π̃x(x) = 1. Since π̃x(y)⩾ 0, it follows that π̃x
Exτ+x

is a distribution on the state space X.
We next show that π̃x is an invariant distribution of DTMC X. Using the monotone convergence

theorem, we can write

∑
w∈X

π̃x(w)pwz = ∑
n∈N

∑
w∈X

Px
{

τ+
x ⩾ n, Xn = w

}
P({Xn+1 = z} | {Xn = w}).

We first focus on the term w = x. We see that {Xn = x,τ+
x ⩾ n} = {τ+

x = n} . Hence, from the strong
Markov property, we have Px {Xn = x, Xn+1 = z,τ+

x ⩾ n} = Px {τ+
x = n} pxz. Summing over all n ∈ N,

we get
π̃x(x)pxz = ∑

n∈N

Px
{

Xn = x, Xn+1 = z,τ+
x ⩾ n

}
= pxz ∑

n∈N

Px
{

τ+
x = n

}
= pxz.

3



We next focus on the terms w ̸= x, such that {Xn = w,τ+
x ⩾ n}= {Xn = w,τ+

x ⩾ n + 1} ∈ Fn. Hence,
from the Markov property of X, we can write

Px
{

τ+
x ⩾ n + 1, Xn = w, Xn+1 = z

}
= Px

{
τ+

x ⩾ n, Xn = w
}

P({Xn+1 = z} |
{

Xn = w,τ+
x ⩾ n, X0 = x

}
)

= Px
{

τ+
x ⩾ n, Xn = w

}
pwz.

Summing both sides over n ∈ N and w ̸= x, we get

∑
w ̸=x

π̃x(w)pwz = ∑
n∈N

∑
w ̸=x

Px
{

τ+
x ⩾ n + 1, Xn = w, Xn+1 = z

}
= ∑

n⩾2
Px

{
τ+

x ⩾ n, Xn = z
}

= π̃x(z)− Px
{

τ+
x ⩾ 1, X1 = z

}
= π̃x(z)− pxz.

The result follows from summing both the cases.

2.2 Uniqueness of stationary distribution

Recall that distributions π on state space X such that πP=π is called a stationary distribution. Similarly,
a function h : X→ R is called harmonic at x if

h(x) = ∑
y∈X

pxyh(y).

A function is harmonic on a subset D ⊂ X if it is harmonic at every state x ∈ D. That is, Ph = h for a
function harmonic on the entire state space X.

Lemma 2.5. For a finite irreducible Markov chain, a function f that is harmonic on all states in X is a constant.

Proof. Suppose h is not a constant, then there exists a state x0 ∈ X, such that h(x0) ⩾ h(y) for all states
y ∈ X. Since the Markov chain is irreducible, there exists a state z ∈ X such that px0,z > 0. Let’s assume
h(z) < h(x0), then

h(x0) = px0,zh(z) + ∑
y ̸=z

px0,yh(y) < h(x0).

This implies that h(x0) = h(z) for all states z such that px0,z > 0. By induction, this implies that any
h(x0) = h(y) for any states y reachable from state x0. Since all states are reachable from state x0 by
irreducibility, this implies h is a constant on the state space X.

Corollary 2.6. For any irreducible and aperiodic finite Markov chain, there exists a unique stationary distribu-
tion π.

Proof. For an aperiodic and irreducible DTMC X : Ω→XZ+ with finite state space X, we have Px

{
τ+

y < ∞
}
=

1 and Exτ+
y < ∞ for all states x,y ∈ X. Therefore, we have seen the existence of a positive stationary

distribution π for an irreducible and aperiodic finite Markov chain. Further, from previous Lemma we
have that the dimension of null-space of (P − I) is unity. Hence, the rank of P − I is |X| − 1. Therefore,
all vectors satisfying ν = νP are scalar multiples of π.

2.3 Stationary distribution for irreducible and aperiodic finite DTMC

For a finite state irreducible and aperiodic DTMC X : Ω →XZ+ , we have Exτ+
y < ∞ and Px

{
τy < ∞

}
= 1

for all x,y ∈ X. That is, the return times are finite almost surely, and hence we can apply strong Markov
property at these stopping times to obtain that DTMC X is a regenerative process with delayed renewal
sequence τ+

y : Ω → NN, where τ+
y (0)≜ 0, and τ+

y (n)≜ inf
{

m > τ+
y (n − 1) : Xm = y

}
.

Theorem 2.7. For a finite state irreducible and aperiodic Markov chain X : Ω → XZ+ , its invariant distribution
is same as its stationary distribution.

Proof. We can create an on-off alternating renewal function on this DTMC X, which is ON when in state
y. Then, from the limiting ON probability of alternating renewal function, we know that

π(y)≜ lim
k→∞

Px {Xk = y} = lim
n→∞

1
n

n

∑
k=1

1{Xk=y} =
1

Eyτ+
y

.

We observe that π(y) = π̃y(y)
Eyτ+y

for each state y ∈ X. From the uniqueness of invariant distribution, it

follows that π is the unique invariant distribution of the DTMC X. We observe that π(x) is the long-
term average of the amount of time spent in state x and from renewal reward theorem π(x) = 1

Exτ+x
.
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