Lecture-20: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : (2 — XR is time reversible if the vector (Xt,,...,Xt,) has the
same distribution as (Xv—¢,,...,Xr—,) for all finite positive integers n, time instants t; < t, < --- <ty
and shifts T € R.

Lemma 1.2. A time reversible process is stationary.

Proof. Since X; is time reversible, both (Xy,,...,X,) and (Xs44,,..., Xs+t,) have the same distribution
as (X_y,...,X_¢,) foreachn € Nand t; < --- < t, by taking T = 0 and T = —s respectively. O

Definition 1.3. The space of distributions over countable state space X is denoted by

M(X) 2 {zxe 0,1%: (1La)= Y zxx—l}.

xeX
Remark 1. Stationarity means P {HIEMX[I, = xi} =P {ﬂie[”]XSHi = xl} forall s

Theorem 1.4. A stationary homogeneous Markov process X : Q) — XR with countable state space X C R and
probability transition kernel P : Ry — [0,1]X*X is time reversible iff there exists a probability distribution 7t €
P(X), that satisfy the detailed balanced conditions

Tty Pyy (t) = 70, Py (t) for all x,y € X and times t € R 1)
When such a distribution 7t exists, it is the equilibrium distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by 77, and by time reversibility of X, we have

Pr{Xy =x, Xy, =y} = P { X, = x, X1, =y},

for T =t + t1. Hence, we obtain the detailed balanced conditions in Eq. (??). Conversely, let 7 be the
distribution that satisfies the detailed balanced conditions in Eq. (??), then summing up both sides over
y € X, we see that 77 is the equilibrium distribution.

Let (xq,...,Xp) € X™, then applying detailed balanced equations in Eq. (??) repeatedly, we can write

70(x1) Peyxey (b2 — 11) o+« Py oo (B — t—1) = 70(Xm) Pryy 1 (b — tm—1) - .. Pryxey (2 — 11).
For the homogeneous stationary Markov process X, it follows that for all ty € R
Pr{Xy =x1,.. 0, Xty = Xm} = P { Xty = Xy oo, Xbgtty—t; = X1}
Since m € N and t,t; ...,t, were arbitrary, the time reversibility follows. O

Corollary 1.5. A stationary homogeneous discrete time Markov chain X : Q) — X% with transition matrix
P € [0,1]*%* is time reversible iff there exists a probability distribution 7t € P(X), that satisfies the detailed
balanced conditions

TPy = 1y Pyx,  x,y €X. 2)

When such a distribution 7t exists, it is the equilibrium distribution of the process.

Corollary 1.6. A stationary homogeneous Markov process X : Q — XR and generator matrix Q € R¥*¥ is
time reversible iff there exists a probability distribution 7t € P(X), that satisfies the detailed balanced conditions

TxQxy = Ty Qyx, X,y €X. 3)

When such a distribution 7t exists, it is the equilibrium distribution of the process.



Example 1.7 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X, E)
with the vertex set X and the edge set E = {{x,y} : x,y € X} being a subset of unordered pairs of
elements from X. We say that y is a neighbor of x (and x is a neighbor of y), if e = {x,y} € E and
denote x ~ y. We assume a function w : E — R4, such that w, is a positive number associated with
each edge e = {x,y} € E. Let X,, € X denote the location of a particle on one of the graph vertices
at the nth time-step. Consider the following random discrete time movement of a particle on this
graph from one vertex to another. If the particle is currently at vertex x then it will next move to
vertex y with probability

We
PYy £ P({Xpr1 =y} {Xn = x}) = ey el
X

The Markov chain X : Q — XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a graph!

Proposition 1.8. Consider an irreducible homogeneous Markov chain that describes the random walk on an
edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible
with stationary probability of being in a state x € X given by

_ Lwerwy
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(4)
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Proof. Using the definition of transition probabilities for this Markov chain and the given distribu-
tion 7t defined in (2?), we notice that

_We
Y feE Wy

We

Py = Le=(ap))s TP = &y Heste)
Hence, the detailed balance equation for each pair of states x,y € X is satisfied, and the result fol-

lows. O
We can also show the following dual result.

Lemma 1.9. Let X : Q — X%+ be a time reversible Markov chain on a finite state space X and transition
probability matrix P € [0,1]X**. Then, there exists a random walk on a weighted, undirected graph G with
the same transition probability matrix P.

Proof. We create a graph G = (X, E), where E = {{x,y} : x,y € X, Py, > 0}. For the stationary distri-
bution 77 : X — [0,1] for the Markov chain X, we set the edge weights

N _
Wiy} = TxPry = 70y Py,

With this choice of weights, it is easy to check that wy =} . crws = 7y, and the transition matrix

associated with a random walk on this graph is exactly P with Pfy = w%f} = Pyy. O

Is every Markov chain time reversible?

1. If the process is not stationary, then no. To see this, we observe that
P{Xy, =x1,Xt, =x2} = Vi, (x1)Pryxy (f2 — t1), P{Xr—t, = X2, Xv—t; = X1} = Ve, (%2) Py, (2 — £1).

If the process is not stationary, the two probabilities can’t be equal for all times 7,1, t; and states
x1,x2 € X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a sta-
tionary distribution & € M(X) that satisfies the detailed balance equations ay Py, = &y Py for all
states x,y € X. For any arbitrary Markov chain X, one may not end up getting any solution.
To see this consider a state z € X such that Py, Py, > 0. Time reversibility condition implies that



P{X1=x,Xo=y,Xzs=2z} =Py {X1 =2 Xy =y,X3 =z}, and hence
tx _ PeyPye ) Pex
&z  PyyPy Py’

Thus, we see that a necessary condition for time reversibility is PyyPy; Pz = PrzPryPyx for all
x,y,z € X.

Theorem 1.10 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary homoge-
neous Markov chain X : Q — X% is time reversible if and only if starting in state x € X, any path back to state
x has the same probability as the time reversed path, for all initial states x € X. That is, for all n € N and states
(x1,...,x,) €X"

Prx; Pryxy - - Pryx = Prxy Pryx, 4 -+ - Prpxe
Proof. As detailed balance implies that Pyy, Py, x, - .- Px,x = Py, Pryx, ; - - - Prxyx- Also, as detailed balance is

necessary for time reversibility, Pyy, Px,x, - .. Px,x = Pyx, Px,x,  ---Px;x is necessary for time reversibility.
To see the sufficiency part, fix states x,y € X. For any non-negative integer n € Z, we compute

(Pn+1)XyPyx - Z Prxy - Py Pyx = Z PryPyx, ... Peyx = ny(PnJrl)yx.

X1,X2,+-Xn X1,X2,+-Xn

Taking the limit # — co and noticing that lim;, . (P”)xy = my for all x,y € X, we get the desired result
by appealing to Theorem ??. O

1.1 Reversible Processes

Definition 1.11. Let X : Q — XX be a stationary homogeneous Markov process with stationary distri-
bution 77 € M(X) and the generator matrix Q € RX**. The probability flux from state x to state y

is defined as lim; oo I\II\]%, where Ntxy = YneN Ls,<t,X,=y, X, 1=x} and Nt =} e (s, <4y respectively
denote the total number of transitions from state x to state y and the total number of transition in time
duration (0,£].
Lemma 1.12. The probability flux from state x to state y is

N

e = Jim -

Lemma 1.13. For a stationary homogeneous Markov process X : Q — XR, probability flux balances across a cut
A C X, that is

> Y mQy =) ) myQux

yEAxeA XEAY¢A

Proof. From global balance condition 7Q = 0, we get Zye ALxex TxQxy = Yxea Zyex 7ty Qyx = 0. Fur-
ther, we have the following identity } e 4} rea TxQxy = Lyea Lxea TyQyx. Subtracting the second
identity from the first, we get the result. O

Corollary 1.14. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,

Y xQuy = ) 7y Qya-
y#x y#x

Example 1.15. We define two non-negative sequences birth and death rates denoted by A € ]R%+
and p € RYY. A Markov process X : O — Z]If’ is called a birth-death process if its infinitesimal transi-
tion probabilities satisfy

Popim(h) = (1 = Anh — puhtl 20y — 0(h)) Loy + AnhT o1y + pnh e 1) Linzoyp + 0(h).

We say f(h) = o(h) if limy,_,q f(h)/h = 0. In other words, a birth-death process is any CTMC with
generator of the form

~ Ao Ao 0 0 0
M1 —(/\1 + ﬂ]) M 0 0
o= 0 2 — (A2 + u2) A2 0

0 0 13 —(A3+mu3) A3



Proposition 1.16. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form
A={0,1,2,...,n}, for n € Z. But, this is precisely the equation 7t,A,, = 77,11}, +1 Since there are
no other transitions possible across the cut. So the process is time-reversible. O

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.17. Consider an ergodic CTMC X : Q) — XR on a countable state space X with generator matrix
Q € R**X having the following property. For any pair of states x # y € X, there is a unique path x = xg —
X1 = o0 = Xy(yy) = Y of distinct states having positive probability. Then the CTMC in steady-state is time
reversible.

Proof. Let the stationary distribution of X be 71 € M(X), such that 1Q = 0. For a finite n € IN, increasing
time instants t; < --- <t;,, and states x,x1,...,x,_1,y € X, we compute the probability

P;-( {Xto = X,th = X],...,th = y} = ﬁxPxxl(tl — l’o) . ..Pxnilxn (tn — tnfl).

For the same n € IN, increasing time instants t; < --- < t;;, and states x,x1,...,%,-1,¥ € X, and shift
T € R, we compute the probability

Py {X'rft,, =Y, Xe—t, g = Xn—1,+-, Xo—ty = x} = ﬂypyxn,l (tn - tn—l) . --lex(tl - tO)'

We can write LHS as



