
Lecture-21: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with
finite service capacity.

1.1 Notation

The notation A/T/N/B/S for a queueing system indicates different components.

A : stands for inter-arrival time distribution. Typical inter-arrival time distributions are general in-
dependent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for
Poisson arrivals, phase-type (PH), or deterministic (D).

T : stands for service time distribution. Similar to inter-arrival time distribution, the typical service
time distributions are general independent (GI), memoryless (M) for exponential service times,
phase-type (PH), or deterministic (D).

N : stands for number of servers. The number of servers could be one, finite (N), or countably finite
(∞).

B : stands for the buffer size, or the maximum number of entities waiting and in service at any time.
The buffer size is typically arbitrarily large, or equal to the number of servers. If there is no buffer
size specified, then it is ∞ by default.

S : stands for the queueing service discipline. Service discipline is usually first-come-first-served
(FCFS), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-
shared (PS). If there is no queueing discipline specified, then it is FIFO by default.

Typical performance metrics of interest are the sojourn times averaged over each arriving entity, and
the number of entities in the queue as seen by the arriving or departing entities or the system.

1.2 GI/GI/1 queue

We denote the random sequence of arrival instants by A : Ω → RN
+ where An is the arrival instant of nth

entity. The inter-arrival time sequence is denoted by ξ : Ω → RN
+ , where ξn ≜ An − An−1 is the duration

between the (n − 1)th and nth arrival instants. The random service requirement sequence is denoted
by σ : Ω → RN

+ , where σn is the amount of service needed by nth arrival. For simplicity of analysis,
one assumes that the random inter-arrival sequence ξ : Ω → RN

+ and random service time sequence
σ : Ω → RN

+ are i.i.d. and independent to each other. The arrival point process A : RN
+ is assumed to

be simple, that is P{ξ1 > 0} = 1, and hence this point process is a renewal process. The arrival rate
is denoted by λ ≜ 1

Eξ1
, and the service rate is denoted by µ ≜ 1

Eσ1
. The average load on the system is

denoted by ρ ≜ Eσn
Eξn

= λ
µ .

We denote the random departure instant sequence by D : Ω → RN
+ where Dn is the departure instant

of nth arrival, the random waiting time sequence by W : Ω → RN
+ where Wn is the waiting time of nth

arrival, and the buffer occupancy process by L : Ω → Z
R+
+ where Lt is the number of entities in the

buffer at time t ∈ R+. These are derived processes from the arrival instant and service time processes.
The number of arrivals and departures in a time duration I ⊆ R+ are denoted by NA(I) and ND(I)
respectively. When the interval is (0, t] for some t ∈ R+, then we denote NA(t)≜ NA((0, t]) and ND(t)≜
ND((0, t]). Defining (x)+ ≜ max{x,0}, and letting W0 = w, we can write the waiting time for (n + 1)th
customer before it receives service, as

Wn+1 = (Wn + σn − ξn+1)+, n ∈ Z+.
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We define a random walk S : Ω → RN defined as Sn ≜ ∑n
i=1 Xi for all n ∈ N with S0 = 0, where i.i.d.

step-size sequence X : Ω → RN is defined as Xn+1 = σn − ξn+1 for the step-size n ∈ N. For the random
walk S : Ω → RN, the history until nth step is denoted by Fn ≜ σ(σ1, . . . ,σn,ξ1, . . . ,ξn+1). In terms of
the i.i.d. step-size sequence X : Ω → RN, we can write the waiting time sequence W as the reflected
random walk, where Wn+1 = (Wn + Xn+1)+ for each n ∈ Z+. From the independence of sequence
((σn,ξn+1) : n ∈ N), it follows that reflected random walk W : Ω → RN

+ is a Markov process.

1.3 PASTA

Theorem 1.1 (Poisson arrivals see time averages (PASTA)). At any time t, we denote a system state by
Yt ∈ Y. Let B ∈ B(Y) a Borel measurable set, then

τ̄B ≜ lim
t∈R+

1
t

∫ t

0
1{Yu∈B}du = lim

n∈N

1
n

n

∑
i=1

1{
YA−

i
∈B

} ≜ c̄B.

Proof. We will show the special case when Yt = Lt is the number of customers in the system at time
t ∈ R+, and B = {n}. Using continuity of probability, we define for n ∈ Z+

πn ≜ lim
t→∞

P{Lt = n}, αn ≜ lim
k∈N

P
{

LA−
k
= n

}
= lim

k∈N
lim
h↓0

P(
{

LAk−h = n
}
|
{

LAk = n + 1
}
).

Using independent increment property of Poisson arrivals, Baye’s rule, and the fact that limk∈N Ak = ∞,
we can write the second limiting probability as

αn = lim
k∈N

lim
h↓0

P
{

LAk−h = n, NA(Ak − h, Ak] = 1
}

P{NA(Ak − h, Ak] = 1} = lim
t→∞

P{Lt = n} = πn.

Theorem 1.2 (Little’s law). For a GI/G/1 queue with ρ < 1,

lim
t→∞

1
t

∫ t

0
Ludu = lim

t→∞

∑
NA(t)
i=1 (Wi + σi)

NA(t)
.

Proof. The key observation follows from looking at the piecewise constant curve Lt, to conclude

ND(t)

∑
i=1

(Wi + σi)⩽
∫ t

0
Ludu ⩽

NA(t)

∑
i=1

(Wi + σi).

Further, for a stable queue we have limt→∞
ND(t)

t = limt→∞
NA(t)

t .
Hence,

lim
t→∞

1
t

∫ t

0
Ludu = lim

t→∞

1
t

NA(t)

∑
i=1

(Wi + σi) = lim
t→∞

1
NA(t)

NA(t)
t

NA(t)

∑
i=1

(Wi + σi).

Now, if limt→∞
NA(t)

t and limt→∞
1

NA(t)
∑

NA(t)
i=1 (Wi + σi) exist, and limt→∞

NA(t)
t = λ we can write,

lim
t→∞

1
t

∫ t

0
Ludu = λ lim

t→∞

1
NA(t)

NA(t)

∑
i=1

(Wi + σi).

1.4 M/M/1 queue

We consider the simplest continuous time queueing system with Poisson arrivals of homogeneous rate
λ = 1

Eξ1
, independent i.i.d. exponential service time of rate µ = 1

Eσ1
for each arrival, single server with

infinite buffer size, and FCFS service discipline. It is clear that L : Ω → Z
R+
+ is a right continuous

process with left limits, and is piece-wise constant. We observe that Lt remains unchanged in the time
t+ [0,min{YA(t),YS(t)}). Further, Lt can have at most one transition in an infinitesimally small interval
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(t, t + h] with high probability, since the probability of two or more transitions is of order o(h). Further,
we observe that Lt can have a unit increase if YA(t)< YS(t) and a unit decrease otherwise, for Lt ⩾ 1. If
Lt = 0, there can be no service and Lt remains 0 until t +YA(t), and has a unit increase at time t +YA(t).

Since the arrival and the service times are memoryless, the residual time for next arrival YA(t) is
identically distributed to ξ1 and independent of past Ft and residual service time for entity in service
YS(t) is identically distributed to σ1 and independent of past Ft. It follows that L is a homogeneous
CTMC, and we can write the corresponding generator matrix as

Q(n,m) = λ1{m−n=1} + µ1{n−m=1,m⩾0}.

We observe that Q(n,n) = −(λ + µ) for n ∈ N and Q(0,0) = −λ.
The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a

continuous-time queueing model with following components.

• There is a single queue for waiting that can accommodate arbitrarily large number of customers.

• Arrivals to the queue occur according to a Poisson process with rate λ > 0. That is, let An be the
arrival instant of the nth customer, then the sequence of inter-arrival times ξ is i.i.d. exponentially
distributed with rate λ.

• There is a single server and the service time of nth customer is denoted by a random variable
σn. The sequence of service times σ : Ω → RN

+ is i.i.d. exponentially distributed with rate µ > 0,
independent of the Poisson arrival process.

• We assume that customers join the tail of the queue, and hence begin service in the order that they
arrive first-in-queue-first-out (FIFO).

Let Xt denote the number of customers in the system at time t ∈ R+, where “system” means the queue
plus the service area. For example, Xt = 2 means that there is one customer in service and one waiting
in line. Due to continuous distributions of inter-arrival and service times, a transition can only occur at
customer arrival or departure times. Further, departures occur whenever a service completion occurs.
Let Dn denote the nth departure from the system. At an arrival time An, the number LAn = LA−

n
+ 1

jumps up by the amount 1, whereas at a departure time Dn, then number LDn = LD−
n
− 1 jumps down

by the amount 1.
For the M/M/1 queue, one can argue that L : Ω → Z

R+
+ is a CTMC on the state space Z+. We will

soon see that a stable M/M/1 queue is time-reversible.

1.4.1 Transition rates

Given the current state {Xt = i}, the only transitions possible in an infinitesimal time interval are (a)
a single customer arrives, or (b) a single customer leaves (if i ≥ 1). It follows that the infinitesimal
generator for the CTMC {Xt}t is

Qij =


λ, j = i + 1,
µ, j = i − 1,
0, |j − i| > 1.

Since λ,µ > 0, this defines an irreducible CTMC.

1.4.2 Equilibrium distribution and reversibility

We can define the load ρ = λ
µ , and find the stationary distribution π by solving the global balance

equation π = πQ which gives

πn−1Qn−1,n + πn+1Qn+1,n = −πnQnn, π1Q1,0 = −π0Q00.

Taking the discrete Fourier transform Π(z) =∑n∈Z+
znπn of the distribution π, we get zλΠ(z)+ z−1µ(Π(z)−

π(0)) = (λ + µ)Π(z)− µπ(0). That is, Π(z) = π(0)/(1 − zρ). Hence it follows from ∑n∈Z+
π(n) = 1

that
π(n) = (1 − ρ)ρn, n ∈ Z+.

3



Example 1.3 (M/M/1 queue). The M/M/1 queue’s generator defines a birth-death process.
Hence, if it is stationary, then it must be time-reversible, with the equilibrium distribution π satis-
fying the detailed balance equations πnλ = πn+1µ for each n ∈ Z+. This yields πn+1 = ρπn for the
system load ρ = Eσ1/Eξ1 = λ/µ. Since ∑i≥0 π = 1, we must have ρ < 1, such that πn = (1 − ρ)ρn

for each n ∈ Z+. In other words, if λ < µ, then the equilibrium distribution of the number of cus-
tomers in the system is geometric with parameter ρ = λ/µ. We say that the M/M/1 queue is in the
stable regime when ρ < 1.

Corollary 1.4. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Further, since M/M/1 queue is a reversible CTMC, the following theorem follows.

Theorem 1.5 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

1.5 Equilibrium distribution of M/M/1 Queue

Recall the global balance equations for equilibrium distribution π ∈ [0,1]Z+ are

− π0λ + π1µ = 0, πk−1λ − πk(λ + µ) + πk+1µ = 0, k ∈ N.

Recognizing that π is a one-sided countably infinite sequence, we denote the discrete Fourier transform
or the z-transform of the distribution π ∈ [0,1]Z+ as

Π(z)≜ ∑
k∈Z+

πkzk.

Using this notation, we can compute

(λ + µ) ∑
k∈N

πkzk = λ ∑
k∈N

πk−1zk + µ ∑
k∈N

πk+1zk.

Using the definition of Π(z), we can re-write this as

(λ + µ)(Π(z)− π0) = λzΠ(z) + µz−1(Π(z)− π0 − zπ1).

Since π1 = π0ρ where ρ = λ
µ , we can re-arrange the terms to get

Π(z) =
π0

(1 − ρz)
.

Inverting the z-transform, we get
πk = π0ρk, k ∈ N.
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