
Lecture-22: Reversed Processes

1 Reversed Processes

Definition 1.1. Let X : Ω → XT be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X̂τ : Ω → XT defined as X̂τ(t) ≜ X(τ − t) for all t ∈ T is the reversed process for
some τ ∈ T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 1.2. If X : Ω → XT is a Markov process, then the reversed process X̂τ is also Markov for any τ ∈ T.

Proof. Let Ft = σ(X(s) : s ⩽ t) denote the history of the process until time t. From the Markov property of
process X, we have for any event B ∈ Ft+u, states x,y ∈ X and times u, s > 0

P(B| {Xt = y, Xt−s = x}) = P(B| {Xt = y}).

Markov property of the reversed process follows from the observation, that

P({Xt−s = x} |{Xt = y} ∩ B) =
P{Xt−s = x, Xt = y}P(B| {Xt−s = x, Xt = y})

P{Xt = y}P(B| {Xt = y}) = P({Xt−s = x} |{Xt = y}).

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 1.3. If X : Ω →XR is an irreducible, positive recurrent, stationary, and homogeneous Markov process with
transition kernel P : R → [0,1]X×X and equilibrium distribution π, then the reversed Markov process X̂τ : Ω → XR

is also irreducible, positive recurrent, stationary, and homogeneous with the same equilibrium distribution π and
transition kernel P̂ : R → [0,1]X×X defined for all t ∈ T and states x,y ∈ X, as

P̂xy(t)≜
πy

πx
Pyx(t).

Further, for any finite sequence x ∈ Xn, we have

Pπ ∩n
i=1 {Xti = xi} = P̂π ∩n

i=1
{

X̂ti = xn−i+1
}

.

Proof. We can check that P̂ is a probability transition kernel, since P̂xy ⩾ 0 for all t ∈ T and

∑
y∈X

P̂xy(t) =
1

πx
∑

y∈X
πyPyx(t) = 1.

Further, we see that π is an invariant distribution for P̂, since for all states x,y ∈ X

∑
x∈X

πx P̂xy(t) = πy ∑
x∈X

Pyx(t) = πy.
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We next wish to show that P̂ defined in the Theorem, is the probability transition kernel for the reversed
process. Since the forward process is stationary and time-homogeneous, we can write the probability
transition kernel for the reversed process as

P(
{

X̂τ
τ−t+s = x

}
|
{

X̂τ
τ−t = y

}
) =

P
{

X̂τ
τ−t+s = x, X̂τ

τ−t = y
}

P
{

X̂τ
τ−t = y

} =
Pπ {Xt−s = x, Xt = y}

Pπ {Xt = y} =
πxPxy(0, s)

πy
.

This implies that the reversed process is time-homogeneous and has the desired probability transition
kernel. Further, π is the stationary distribution for the reversed process and is the marginal distribution
for the reversed process at any time t, and hence the reversed process is also stationary.

For an irreducible and positive recurrent Markov process with stationary distribution π, we have πx > 0
for each state x ∈ X. Since the forward process is irreducible, there exists a time t ⩾ 0 such that Pyx(t) > 0
for states x,y ∈ X, and hence P̂xy(t) > 0 implying irreducibility of the reversed process. From the Markov
property of the underlying processes and definition of P̂, we can write

Pπ{Xt1 = x1, . . . , Xtn = xn}= πx1

n−1

∏
i=1

Pxixi+1(ti+1 − ti) = πxn

n−1

∏
i=1

P̂xi+1xi (ti+1 − ti) = P̂π{X̂t1 = xn, . . . , X̂tn = x1}.

This follows from the fact that πx1 Px1x2(t2 − t1) = πx2 P̂x2x1(t2 − t1), and hence we have

πx1

n−1

∏
i=1

Pxixi+1(ti+1 − ti) = πxn

n−1

∏
i=1

P̂xi+1xi (ti+1 − ti).

Let’s take τ = tn + t1, then we have X̂τ
t = X(tn + t1 − t) and hence we have (Xt1 , . . . , Xti , . . . , Xtn) = (X̂τ

tn
, . . . , X̂τ(t1 +

tn − ti), . . . , X̂τ
t1
). From the Markovity of the reversed process, we can write

P̂π

{
X̂τ

tn = x1, . . . , X̂τ
t1
= xn

}
= P̂π

{
X̂τ

t1
= xn, . . . , X̂τ

tn = x1
}
= πxn

n−1

∏
i=1

P̂(X̂τ
τ−tn−i

= xn−i|X̂τ
τ−tn−i+1

= xn−i+1)

= πxn

n−1

∏
i=1

P̂xn−i+1xn−i (tn−i+1 − tn−i) = πxn

n−1

∏
i=1

P̂xi+1xi (ti+1 − ti).

For any finite n ∈ N, we see that the joint distributions of (Xt1 , . . . , Xtn) and (Xs+t1 , . . . , Xs+tn) are identical
for all s ∈ T, from the stationarity of the process X. It follows that X̂ is also stationary, since (X̂tn , . . . , X̂t1)

and (X̂s+tn , . . . , X̂s+t1) have the identical distribution.

Corollary 1.4. If X : Ω → XZ is an irreducible, stationary, homogeneous Markov chain with transition matrix P
and equilibrium distribution π, then the reversed chain X̂τ : Ω → XZ is an irreducible stationary, time homogeneous
Markov chain with the same equilibrium distribution π, and transition matrix P̂ defined as P̂xy =

πy
πx

Pyx, for all
x,y ∈ X.

Corollary 1.5. If X : Ω → XR is an irreducible, stationary, homogeneous Markov process with generator matrix Q
and equilibrium distribution π, then the reversed process X̂τ : Ω →XR is also an irreducible, stationary, homogeneous
Markov process with same equilibrium distribution π and generator matrix Q̂ defined as Q̂xy =

πy
πx

Qyx, for all
x,y ∈ X.

Corollary 1.6. Consider irreducible Markov chain with transition matrix P : X×X→ [0,1]. If one can find a non-
negative vector α ∈ [0,1]X and other transition matrix P∗ : X× X→ [0,1] such that ∑x∈X αx = 1 and satisfies the
detailed balance equation

αxPxy = αyP∗
yx,

then α is the stationary probability vector of P and P∗ is the transition matrix for the reversed chain.

Proof. Summing both sides of the detailed balance equation αxPxy = αyP∗
yx over x, we obtain ∑x∈X αxPxy =

αy. It follows that α ∈ [0,1]X is the stationary distribution of the forward process. Since P∗
yx =

αx Pxy
αy

, it follows
that P∗ : X× X→ [0,1] is the transition matrix of the the reversed chain and α is the invariant distribution
of the reversed process.
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Corollary 1.7. Let Q : X× X → R denote the rate matrix for an irreducible Markov process. If we can find Q∗ :
X×X→ [0,1] and a vector π ∈ [0,1]X such that ∑x∈X πx = 1 and for y ̸= x ∈ X, we have

πxQxy = πyQ∗
yx, and ∑

y ̸=x
Qxy = ∑

y ̸=x
Q∗

xy,

then Q∗ is the rate matrix for the reversed Markov chain and π is the equilibrium distribution for both processes.

2 Applications of Reversed Processes

2.1 Truncated Markov Processes

Definition 2.1. For a Markov process X : Ω → XR, and a subset A ⊆ X the boundary of A is defined as

∂A ≜
{

y /∈ A : Qxy > 0, for some x ∈ A
}

.

Definition 2.2. Consider a transition rate matrix Q : X× X → R on the countable state space X. Given a
nonempty subset A ⊆ X, the truncation of Q to A is the transition rate matrix QA : A × A → R, where for
all x,y ∈ A

QA
xy ≜

{
Qxy, y ̸= x,
−∑z∈A\{x} Qxz, y = x.

Proposition 2.3. Suppose X : Ω → XR is an irreducible, time-reversible CTMC on the countable state space X, with
generator Q : X×X→ R and stationary probabilities π ∈ [0,1]X. Suppose the truncated Markov process to a set of
states A ⊆ X is irreducible. Then, any stationary CTMC with state space A and generator QA is also time-reversible,
with stationary probabilities

πA
y =

πy

∑x∈A πx
, y ∈ A.

Proof. It is clear that πA is a distribution on state space A. We must show the reversibility with this
distribution πA. That is, we must show for all states x,y ∈ A

πA
x Qxy = πA

y Qyx.

However, this is true since the original chain is time reversible.

Example 2.4 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
that has a finite buffer capacity of at most K customers. Thus, customers that arrive when there
are already K customers present are ‘rejected’. It follows that the CTMC for this system is simply
the M/M/1 CTMC truncated to the state space {0,1, . . . ,K}, and so it must be time-reversible with
stationary distribution

πi =
ρi

∑k
j=0 ρj

, 0 ⩽ i ⩽ k.

Example 2.5 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates λi and µi respectively for i ∈ [2]. Then, joint distribution of two queues is

π(n1,n2) = (1 − ρ1)ρ
n1
1 (1 − ρ2)ρ

n2
2 , n1,n2 ∈ Z+.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R
waiting customer then it leaves. In this case,

π(n1,n2) =
ρn1

1 ρn2
2

∑(m1,m2)∈A ρm1
1 ρm2

2
, (n1,n2) ∈ A ⊆ Z+ × Z+.
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