Lecture-22: Reversed Processes

1 Reversed Processes

Definition 1.1. Let X : O — XT be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X7 : Q — XT defined as X7(t) £ X(t —t) for all t € T is the reversed process for
someT € T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 1.2. If X : QO — XT is a Markov process, then the reversed process X* is also Markov for any T € T.

Proof. Let F; = 0(X(s) : s < t) denote the history of the process until time t. From the Markov property of
process X, we have for any event B € J;1, states x,y € X and times u,s > 0

P(BI{X; =y, Xi—s = x}) = P(B|{X: = y}).
Markov property of the reversed process follows from the observation, that

P{ths = x,Xt = ]/}P(Bl {ths = x,Xt = ]/})

P({Xi—s = x}[{Xi =y} NB) = P{X; =y} P(B[{X; = y})

= P({Xi—s =2} [{Xi = y}).

O

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 1.3. If X : Q — X is an irreducible, positive recurrent, stationary, and homogeneous Markov process with
transition kernel P: R — [0,1]**X and equilibrium distribution 7, then the reversed Markov process X : Q) — XR
is also irreducible, positive recurrent, stationary, and homogeneous with the same equilibrium distribution 7 and
transition kernel P R — [0,1]%** defined for all t € T and states x,y € X, as

N 7T
Py (t) £ H—ZPyx(t).

Further, for any finite sequence x € X", we have
P;-[ m?:l {Xti = xl-} = p;-( ﬂ?zl {th. = xn,i+1} .

Proof. We can check that P is a probability transition kernel, since Py, >0 forall t € T and

Y By(t) = — Y myPyal(t) = 1.

yeX Ttx yex

Further, we see that 77 is an invariant distribution for P, since for all states x,ycX

Y Py (t) =1y Y Pu(t) = my.

xeX xeX



We next wish to show that P defined in the Theorem, is the probability transition kernel for the reversed
process. Since the forward process is stationary and time-homogeneous, we can write the probability
transition kernel for the reversed process as

P{Xgﬂ%s = foﬁrfft :]/} _ Pr{Xis=xXi=y} _ nxny(O,s)
P{XI =y} Pr{X: =y} Ty

This implies that the reversed process is time-homogeneous and has the desired probability transition
kernel. Further, 7t is the stationary distribution for the reversed process and is the marginal distribution
for the reversed process at any time ¢, and hence the reversed process is also stationary.

For an irreducible and positive recurrent Markov process with stationary distribution 71, we have 7ty >0
for each state x € X. Since the forward process is irreducible, there exists a time t > 0 such that Py (t) >0

P({XI—H—s :x} | {Xg—t :]/}) =

for states x,y € X, and hence Py, (t) > 0 implying irreducibility of the reversed process. From the Markov
property of the underlying processes and definition of P, we can write
n—1 n-1 A .
P;-({th =X1,-- .,th = Xn} = 7'[3(1 H Pxile (ti—l—l — ti) = Ty, H Pxi+1xi(ti+l — ti) = P;-[{th =Xn,.. .,th = xl}.
. -

i=1 i

This follows from the fact that 7ty Py, x, (f2 — t1) = 7Ty, sz x, (t2 — t1), and hence we have

n—1 n—1
TTxq H Pxixi+1 (ti+1 - ti) = TTx, H Pxi+lxi(ti+1 - ti)'
i=1 i=1

Let’s take T = t,, + t1, then we have Xf = X(t; +t; —t) and hence we have (Xy,,..., X¢,,..., Xt,) = ()A(fn, . .,XT(tl +
ty —ti),..., }A(fl ). From the Markovity of the reversed process, we can write

n—1
P {Xf =x1,.. X =2} =P {Xf, =, K] =} =, [ [ P(RTLy, =2l XEy, = X0min1)
i=1

n—1 n—1
= Tlx, H Pxn7i+1xn—i(t’1—i+1 - tn—i) = Tlx, H Pxi+lxi(ti+1 - tl)
i=1 i=1

For any finite n € IN, we see that the joint distributions of (X,,...,X;,) and (Xsi¢,,..., Xs1,) are identical
for all s € T, from the stationarity of the process X. It follows that X is also stationary, since (X,,...,Xt,)
and (Xst+,, ..., Xstt,) have the identical distribution. O

Corollary 1.4. If X : Q — X% is an irreducible, stationary, homogeneous Markov chain with transition matrix P
and equilibrium distribution 7, then the reversed chain X : Q — X% is an irreducible stationary, time homogeneous
Markov chain with the same equilibrium distribution 7, and transition matrix P defined as Py, = %Pyx, for all
x,y€X.

Corollary 1.5. If X : Q — XR is an irreducible, stationary, homogeneous Markov process with generator matrix Q
and equilibrium distribution 7, then the reversed process XT : Q) — XR is also an irreducible, stationary, homogeneous
Markov process with same equilibrium distribution 7t and generator matrix Q defined as Qy = %ny, for all
x,y € X. “

Corollary 1.6. Consider irreducible Markov chain with transition matrix P : X x XX — [0,1]. If one can find a non-
negative vector o € [0,1]% and other transition matrix P* : X x X — [0,1] such that ¥ycx ax = 1 and satisfies the
detailed balance equation

axPyy = txyP;x,

then w is the stationary probability vector of P and P* is the transition matrix for the reversed chain.

Proof. Summing both sides of the detailed balance equation axPx, = ay Py, over x, we obtain } ;¢ x axPry =

ay. It follows that a € [0,1] X is the stationary distribution of the forward process. Since Py, = “x;;xy , it follows
that P* : X x X — [0,1] is the transition matrix of the the reversed chain and « is the invariant distribution
of the reversed process. U



Corollary 1.7. Let Q : X x X — IR denote the rate matrix for an irreducible Markov process. If we can find Q* :
X x X — [0,1] and a vector 7t € [0,1]% such that ¥y.c 70, = 1 and for y # x € X, we have
nxQxy = n]/Q;xr and Z Qxy = Z Q;yl
y#x y7x

then Q* is the rate matrix for the reversed Markov chain and 1 is the equilibrium distribution for both processes.

2 Applications of Reversed Processes

2.1 Truncated Markov Processes
Definition 2.1. For a Markov process X : (2 — XR and a subset A C X the boundary of A is defined as
QA= {y¢ A:Qx, >0, forsomex € A}.

Definition 2.2. Consider a transition rate matrix Q : X x X — R on the countable state space X. Given a
nonempty subset A C X, the truncation of Q to A is the transition rate matrix QA : A X A— R, where for
allx,yc A

QA é Qxy, y # X,
Yoo - Ceea(x) Qe y =2

Proposition 2.3. Suppose X : QO — XR is an irreducible, time-reversible CTMC on the countable state space X, with
generator Q : X x X — R and stationary probabilities 7t € [0,1]*. Suppose the truncated Markov process to a set of
states A C X is irreducible. Then, any stationary CTMC with state space A and generator Q4 is also time-reversible,
with stationary probabilities
i = v y € A.
v ZXEA Ty

Proof. Tt is clear that 714 is a distribution on state space A. We must show the reversibility with this
distribution 7t4. That is, we must show for all states x,yeA

A A
7Ty Qxy = Ty Qyx-

However, this is true since the original chain is time reversible. O

Example 2.4 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
that has a finite buffer capacity of at most K customers. Thus, customers that arrive when there
are already K customers present are ‘rejected’. It follows that the CTMC for this system is simply
the M/M/1 CTMC truncated to the state space {0,1,...,K}, and so it must be time-reversible with
stationary distribution

1

m=—L o<i<k

Z;‘{:O o/ ’

Example 2.5 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates A; and y; respectively for i € [2]. Then, joint distribution of two queues is

mt(n1,n2) = (1—p1)e" (1 - p2)py%, n1,m2 € Zs.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R
waiting customer then it leaves. In this case,

ny np
P1 P2
mo /

Z( ) Apmlp (”11”2) 6 A g Z+ X Z+
my,mp)€ A1 P2

m(ny,np) =
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