Lecture-24: Martingales

1 Martingales

Definition 1.1. Let (Q),F,P) be a probability space. A filtration is an increasing sequence of o-fields
denoted by F, = (F, C F: n € N), with nth o-field denoted by F,.

Definition 1.2. For a discrete stochastic process X : QO — RN, its natural filtration is defined as
Fn=0(X,..., Xn).

Definition 1.3. A random sequence X : QO — RN of random variables is said to be adapted to the
filtration F, if 0(X,) C F, forall n € N.

Remark 1. For any random sequence X adapted to a filtration JF,, we also have ¢(Xj,...,X,) C F, for
each n € IN.

Definition 1.4. A discrete stochastic process X : O — RN is said to be a martingale with respect to the
filtration JF, if for each n € IN,

i integrability. E |X,| < co,
ii- adaptability. 0(X,) C F,
iii. unbiasedness. E[X, 1|F,] = X,.

If the equality in third condition is replaced by < or >, then the process is called supermartingale or
submartingale, respectively.

Corollary 1.5. For a martingale X adapted to a filtration Fo, we have
EX, =EXj, n € N.

Example 1.6 (Simple random walk). Let ¢ : Q — RN be a sequence of independent random vari-
ables with mean [E¢; = 0 and E|¢;| < co for each i € IN. Let F, be the natural filtration of random
sequence ¢, such that F, = 0({y,...,¢,) for each n € IN. Consider the random sequence X : () — RN
such that X, £ Y, ¢ for each n € N.

Then, the random sequence X is a martingale with respect to filtration F,. This follows, since
EX, =0, and from the linearity of expectation and the finiteness of finitely many individual terms,
the absolute sum E |X,,| < YI"; E||; < co. Further, we have

E[X,11|Fu] = E[Xy + Cny1|Tn] = X

Example 1.7 (Product martingale). Let ¢ : Q) — RN be a sequence of independent random variables
with mean E¢; =1 and E|;| < co for each i € IN. Let F, be the natural filtration of random sequence
¢, such that ¥, = 0({y,...,&y) for each n € N. Consider the random sequence X : () — RN such that
X, & [T, ¢; for each n € IN, then X is adapted to F,.

Then, the random sequence X is a martingale with respect to filtration F,. This follows, since
EX, =1, and from the independence and finiteness of finitely many individual terms the absolute
product E | X, | = [TiL; E¢; < co. Further, we have

E[X+1|Fn] = E[XnGn+1]Fn] = Xn.



Example 1.8 (Branching process). Consider a population where each individual i can produce
an independent random number of offsprings Z; in its lifetime, given by a common distribution
P:Z. —[0,1] and finite mean p = } ;-\ jP; < c. Let X;, denote the size of the nth generation, which
is same as the number of offsprings generated by (n — 1)th generation. The discrete stochastic
process X : O — ZIN is called a branching process. Let X = 1 and consider the natural filtration F,
of X such that ¥, = 0(Xq, ..., Xy). Then,

anl
Xo= Y Z.
i=1

e . X,
Conditioning on X,_; yields, E[X;|F,_1] = E[X;"" Zi|Fu-1] = E[Lien Zi]l{igx,z,l}btnfl] =
YienE[Zi|F-1]1 (<X, 1} = ZZ.X:”{ "1 = uX,_1. Applying expectation on both sides, and by induc-

tion on 1, we get E[X,,] = u"". Consider a positive random sequence Y : Q — RY defined by Y, = %
for each n € IN. Then Y is a martingale with respect to filtration ¥, because E[Y,] = 1, the expecta-

tion of absolute value E |Y,| = % = % =1,and

1 &% Xy,
E[Y,11|F:] = WIE[ZZI-\%] = o =Y,.
i=1

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Q — RN with asso-
ciated natural filtration F,, and an arbitrary random variable Z : () — R such thatE |Z| < co. Then,
a random sequence X : O — RN defined by X, £ E[Z|F,] for each n € N, is a martingale. The
integrability condition can be directly verified, the sequence X is adapted to F, by definition of
conditional expectation, and by the tower property of conditional expectation

E[X,41(%] = E[E[Z|F,11]|] = E[ZIF] = X

Example 1.10 (Centralized Doob sequence). For any sequence of random variables X : QO — RN
with E |X,,| < oo for all n € IN and its natural filtration F,, the random variable X; — E[X;|F; {]
is zero mean for each i € N. Hence, the centralized zero mean sequence Z : QO — RN defined by

Zn =Y (X; — E[X;|F;_1]) for each n € N. Then the random sequence Z is adapted to the filtration
Fo and is a martingale with respect to this filtration F,, provided E|Z,| < co. This is true because
E|Z,| < UL E|X; — E[X;|Fi1]| < L E X + E[|X;]|Fi—1] < co. Further, from the linearity and
the tower property of conditional expectation, we have

E[Z11|Fn] = E[Zn + Xy1 — E[Xy41|Fn]|Fn] = Zn + E[Xy11|Fn] — E[Xy11|Fn] = Zn-

Lemma 1.11. Consider a filtration Fo = (F, C F : n € IN) on the probability space (O, F, P). Consider a random
sequence X : Q) — RN which is a martingale with respect to the filtration Fo, and a convex function f : R — R.
Then, the random sequence Y : Q — RN defined by Y, = f(X,,) for each n € N, is a submartingale with respect
to the filtration F,.

Proof. The result is a direct consequence of Jensen’s inequality for conditional expectations, since

E[f (Xn+1)|Fn] = f(B[Xy11]Fn]) = f(Xn)-

Check if this is true:
E Y| =E|f(Xn)| < [E[f(Xn)]|

If this is not true, what condition is needed for integrability. O



Corollary 1.12. Consider a random sequence X : QO — RN defined on the probability space (Q,F, P), with its
natural filtration Fo. Let a € R be a constant, and consider two random sequences Y : Q3 — RN and Z: O — RN
generated by X, such that for each n € N,

Yné(xn_”)+:(XnVﬂ)—ﬂ, 7,2 X, Aa.
i If X is a submartingale with respect to Fo, then so is Y with respect to F.

ii_ If X is a supermartingale with respect to Fo, then so is Z with respect to F.

1.1 Stopping Times
Consider a discrete filtration Fo = (5, CF:n € Z,).

Definition 1.13. A positive integer valued, possibly infinite, random variable N is said to be a random
time with respect to the filtration ¥,, if the event {N =n} € &, for eachn € N. If P{N < oo} =1, then
the random time N is said to be a stopping time.

Definition 1.14. A random sequence H : Q — RN is predictable with respect to the the filtration T, if
o(Hy) C F,_1 for each n € IN. Further, we define

(H-X), = i Hy (X — Xpp1).
m=1

Theorem 1.15. Consider a supermartingale sequence X : Q0 — RN and a predictable sequence H : Q — RN with
respect to a filtration Fo, where each Hy, is non-negative and bounded. Then the random sequence Y : Q — RN
defined by Y,, = (H - X),, for each n € IN is a supermartingale with respect to F.

Proof. It follows from the definition,
]E[(H'X)n+1|3rn} :]E[HnJrl (Xn+1 - Xn) + (H'X)n|~r7rn] =Hp (]E[Xn+1|3rn] - Xn) + (HX)n < (H'X>n-

O

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process X : Q — RN adapted to a discrete filtration F.
Let T : Q) — N be a random time for the filtration F,, then the stopped process X' : 0 — RN is defined
foreachn € N as

Xy & Xrpn = Xnlnery + Xrlps1y

Proposition 1.17. Let X : Q — RN be a martingale with a discrete filtration Fo. If T : Q — N is an integer
random time for the filtration F,, then the stopped process (X, : n € IN) is a martingale.

Proof. Consider a random sequence H : ) — {0,1}]N defined by H, £ 1 (n<t) for each n € N. Then H
is a non-negative and bounded sequence. Further H is predictable with respect to F,, since the event

M<T}={T>n-1} ={T<n—1} = (UHT =) =N {T #i} € Fy_1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process
as

TAn n
Xran = Xo + Z (Xm - Xm—l) =Xo+ Z ]l{mgT} (Xm - Xm—l) =Xo+ (H ’ X)n‘
m=1 m=1

From the previous theorem, it follows that Xt,, is a martingale, and we have EX7x,, = EXTpr1 = EXj.
O

Remark 2. For any martingale X : O — RN and a stopping time T : QO — IN adapted to F,, we have
EXrtpan = EXy, for all n € N. It is immediate that stopped process converges almost surely to Xr, i.e.

P< lim X =Xr,=1.
{nle% TAn T}
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This is true because T < oo almost surely. We are interested in knowing under what conditions will
we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : QO — RN be a martingale and T : QO — N be a
stopping time adapted to a discrete filtration F,. Then, the random variable Xt is integrable and the stopped
process Xtny converges in mean to X, i.e.

lim IEXT/\n = ]EXT = lEXl,
nelN

if either of the following conditions holds true.

(i) T is bounded,

(ii) X1 py is uniformly bounded,
(iii) ET < oo, and for some real positive K, we have sup,, . E[| X1 — Xu||Fu] <K
Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n > K, we have Xt,, = Xr, and hence it follows that

]EXl = IEXT/\H = ]EXT, for all n > K.

(if) Dominated convergence theorem implies the result.

(ili) Since T is integrable and X7,, < |X1| + KT, we observe that Xt,, is bounded by an integrable
random variable. The result follows from dominated convergence theorem.

O

Corollary 1.19 (Wald’s Equation). If T is a stopping time for the discrete i.i.d. random sequence X : Q — RN
with E|X| < oo and ET < oo, then

T

E) X;=ETEX.

i=1

Proof. Let y = EX and define a random sequence Z : Q — RN such that Z, £ Y ;(X; — u) for each
n € IN, Then Z is a martingale adapted to natural filtration of X, and hence from the Martingale stopping
theorem, we have [EZ1 = EZ; = 0. However, we observe that

T
E[Zr] =E)_X; — uET.
i=1

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the
result follows. O



