
Lecture-24: Martingales

1 Martingales

Definition 1.1. Let (Ω,F, P) be a probability space. A filtration is an increasing sequence of σ-fields
denoted by F• = (Fn ⊆ F : n ∈ N), with nth σ-field denoted by Fn.

Definition 1.2. For a discrete stochastic process X : Ω → RN, its natural filtration is defined as

Fn ≜ σ(X1, . . . , Xn).

Definition 1.3. A random sequence X : Ω → RN of random variables is said to be adapted to the
filtration F• if σ(Xn) ⊆ Fn for all n ∈ N.

Remark 1. For any random sequence X adapted to a filtration F•, we also have σ(X1, . . . , Xn) ⊆ Fn for
each n ∈ N.

Definition 1.4. A discrete stochastic process X : Ω → RN is said to be a martingale with respect to the
filtration F• if for each n ∈ N,

i integrability. E |Xn| < ∞,

ii adaptability. σ(Xn) ⊆ Fn,

iii unbiasedness. E[Xn+1|Fn] = Xn.

If the equality in third condition is replaced by ⩽ or ⩾, then the process is called supermartingale or
submartingale, respectively.

Corollary 1.5. For a martingale X adapted to a filtration F•, we have

EXn = EX1, n ∈ N.

Example 1.6 (Simple random walk). Let ξ : Ω → RN be a sequence of independent random vari-
ables with mean Eξi = 0 and E|ξi| < ∞ for each i ∈ N. Let F• be the natural filtration of random
sequence ξ, such that Fn = σ(ξ1, . . . ,ξn) for each n ∈ N. Consider the random sequence X : Ω → RN

such that Xn ≜ ∑n
i=1 ξi for each n ∈ N.

Then, the random sequence X is a martingale with respect to filtration F•. This follows, since
EXn = 0, and from the linearity of expectation and the finiteness of finitely many individual terms,
the absolute sum E |Xn|⩽ ∑n

i=1 E |ξ|i < ∞. Further, we have

E[Xn+1|Fn] = E[Xn + ξn+1|Fn] = Xn.

Example 1.7 (Product martingale). Let ξ : Ω → RN be a sequence of independent random variables
with mean Eξi = 1 and E|ξi|< ∞ for each i ∈ N. Let F• be the natural filtration of random sequence
ξ, such that Fn = σ(ξ1, . . . ,ξn) for each n ∈ N. Consider the random sequence X : Ω → RN such that
Xn ≜ ∏n

i=1 ξi for each n ∈ N, then X is adapted to F•.
Then, the random sequence X is a martingale with respect to filtration F•. This follows, since

EXn = 1, and from the independence and finiteness of finitely many individual terms the absolute
product E |Xn| = ∏n

i=1 Eξi < ∞. Further, we have

E[Xn+1|Fn] = E[Xnξn+1|Fn] = Xn.
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Example 1.8 (Branching process). Consider a population where each individual i can produce
an independent random number of offsprings Zi in its lifetime, given by a common distribution
P : Z+ → [0,1] and finite mean µ = ∑j∈N jPj < ∞. Let Xn denote the size of the nth generation, which
is same as the number of offsprings generated by (n − 1)th generation. The discrete stochastic
process X : Ω → ZN

+ is called a branching process. Let X0 = 1 and consider the natural filtration F•
of X such that Fn = σ(X1, . . . , Xn). Then,

Xn =
Xn−1

∑
i=1

Zi.

Conditioning on Xn−1 yields, E[Xn|Fn−1] = E[∑
Xn−1
i=1 Zi|Fn−1] = E[∑i∈N Zi1{i⩽Xn−1}|Fn−1] =

∑i∈N E[Zi|Fn−1]1{i⩽Xn−1} = ∑
Xn−1
i=1 µ = µXn−1. Applying expectation on both sides, and by induc-

tion on n, we get E[Xn] = µn. Consider a positive random sequence Y : Ω → RN
+ defined by Yn ≜

Xn
µn

for each n ∈ N. Then Y is a martingale with respect to filtration F• because E[Yn] = 1, the expecta-
tion of absolute value E |Yn| = E|Xn |

µn = EXn
µn = 1, and

E[Yn+1|Fn] =
1

µn+1 E[
Xn

∑
i=1

Zi|Fn] =
Xn

µn = Yn.

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Ω → RN with asso-
ciated natural filtration F•, and an arbitrary random variable Z : Ω → R such thatE |Z| < ∞. Then,
a random sequence X : Ω → RN defined by Xn ≜ E[Z|Fn] for each n ∈ N, is a martingale. The
integrability condition can be directly verified, the sequence X is adapted to F• by definition of
conditional expectation, and by the tower property of conditional expectation

E[Xn+1|Fn] = E[E[Z|Fn+1]|Fn] = E[Z|Fn] = Xn.

Example 1.10 (Centralized Doob sequence). For any sequence of random variables X : Ω → RN

with E |Xn| < ∞ for all n ∈ N and its natural filtration F•, the random variable Xi − E[Xi|Fi−1]
is zero mean for each i ∈ N. Hence, the centralized zero mean sequence Z : Ω → RN defined by
Zn ≜ ∑n

i=1(Xi −E[Xi|Fi−1]) for each n ∈ N. Then the random sequence Z is adapted to the filtration
F• and is a martingale with respect to this filtration F•, provided E|Zn| < ∞. This is true because
E |Zn| ⩽ ∑n

i=1 E |Xi − E[Xi|Fi−1]| ⩽ ∑n
i=1 E |Xi|+ E[|Xi| |Fi−1] < ∞. Further, from the linearity and

the tower property of conditional expectation, we have

E[Zn+1|Fn] = E[Zn + Xn+1 − E[Xn+1|Fn]|Fn] = Zn + E[Xn+1|Fn]− E[Xn+1|Fn] = Zn.

Lemma 1.11. Consider a filtration F• = (Fn ⊆F : n ∈N) on the probability space (Ω,F, P). Consider a random
sequence X : Ω → RN which is a martingale with respect to the filtration F•, and a convex function f : R → R.
Then, the random sequence Y : Ω → RN defined by Yn ≜ f (Xn) for each n ∈ N, is a submartingale with respect
to the filtration F•.

Proof. The result is a direct consequence of Jensen’s inequality for conditional expectations, since

E[ f (Xn+1)|Fn]⩾ f (E[Xn+1|Fn]) = f (Xn).

Check if this is true:
E |Yn| = E | f (Xn)|⩽ |E[ f (Xn)]|

If this is not true, what condition is needed for integrability.
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Corollary 1.12. Consider a random sequence X : Ω → RN defined on the probability space (Ω,F, P), with its
natural filtration F•. Let a ∈ R be a constant, and consider two random sequences Y : Ω → RN

+ and Z : Ω → RN

generated by X, such that for each n ∈ N,

Yn ≜ (Xn − a)+ = (Xn ∨ a)− a, Zn ≜ Xn ∧ a.

i If X is a submartingale with respect to F•, then so is Y with respect to F•.

ii If X is a supermartingale with respect to F•, then so is Z with respect to F•.

1.1 Stopping Times

Consider a discrete filtration F• = (Fn ⊆ F : n ∈ Z+).

Definition 1.13. A positive integer valued, possibly infinite, random variable N is said to be a random
time with respect to the filtration F•, if the event {N = n} ∈ Fn for each n ∈ N. If P{N < ∞} = 1, then
the random time N is said to be a stopping time.

Definition 1.14. A random sequence H : Ω → RN is predictable with respect to the the filtration F•, if
σ(Hn) ⊆ Fn−1 for each n ∈ N. Further, we define

(H · X)n ≜
n

∑
m=1

Hm(Xm − Xm−1).

Theorem 1.15. Consider a supermartingale sequence X : Ω →RN and a predictable sequence H : Ω →RN
+ with

respect to a filtration F•, where each Hn is non-negative and bounded. Then the random sequence Y : Ω → RN

defined by Yn = (H · X)n for each n ∈ N is a supermartingale with respect to F•.

Proof. It follows from the definition,

E[(H ·X)n+1|Fn] =E[Hn+1(Xn+1 −Xn)+ (H ·X)n|Fn] = Hn+1(E[Xn+1|Fn]−Xn)+ (H ·X)n ⩽ (H ·X)n.

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process X : Ω → RN adapted to a discrete filtration F•.
Let T : Ω → N be a random time for the filtration F•, then the stopped process XT : Ω → RN is defined
for each n ∈ N as

XT
n ≜ XT∧n = Xn1{n⩽T} + XT1{n>T}.

Proposition 1.17. Let X : Ω → RN be a martingale with a discrete filtration F•. If T : Ω → N is an integer
random time for the filtration F•, then the stopped process (XT∧n : n ∈ N) is a martingale.

Proof. Consider a random sequence H : Ω → {0,1}N defined by Hn ≜ 1{n⩽T} for each n ∈ N. Then H
is a non-negative and bounded sequence. Further H is predictable with respect to F•, since the event

{n ⩽ T} = {T > n − 1} = {T ⩽ n − 1}c = (∪n−1
i=0 {T = i})c = ∩n−1

i=0 {T ̸= i} ∈ Fn−1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process
as

XT∧n = X0 +
T∧n

∑
m=1

(Xm − Xm−1) = X0 +
n

∑
m=1

1{m⩽T}(Xm − Xm−1) = X0 + (H · X)n.

From the previous theorem, it follows that XT∧n is a martingale, and we have EXT∧n = EXT∧1 = EX1.

Remark 2. For any martingale X : Ω → RN and a stopping time T : Ω → N adapted to F•, we have
EXT∧n = EX1, for all n ∈ N. It is immediate that stopped process converges almost surely to XT , i.e.

P
{

lim
n∈N

XT∧n = XT

}
= 1.
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This is true because T < ∞ almost surely. We are interested in knowing under what conditions will
we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : Ω → RN be a martingale and T : Ω → N be a
stopping time adapted to a discrete filtration F•. Then, the random variable XT is integrable and the stopped
process XT∧n converges in mean to XT , i.e.

lim
n∈N

EXT∧n = EXT = EX1,

if either of the following conditions holds true.

(i) T is bounded,

(ii) XT∧n is uniformly bounded,

(iii) ET < ∞, and for some real positive K, we have supn∈N E[|Xn+1 − Xn||Fn] < K.

Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n ⩾ K, we have XT∧n = XT , and hence it follows that

EX1 = EXT∧n = EXT , for all n ⩾ K.

(ii) Dominated convergence theorem implies the result.

(iii) Since T is integrable and XT∧n ⩽ |X1| + KT, we observe that XT∧n is bounded by an integrable
random variable. The result follows from dominated convergence theorem.

Corollary 1.19 (Wald’s Equation). If T is a stopping time for the discrete i.i.d. random sequence X : Ω → RN

with E|X| < ∞ and ET < ∞, then

E
T

∑
i=1

Xi = ETEX.

Proof. Let µ = EX and define a random sequence Z : Ω → RN such that Zn ≜ ∑n
i=1(Xi − µ) for each

n ∈N, Then Z is a martingale adapted to natural filtration of X, and hence from the Martingale stopping
theorem, we have EZT = EZ1 = 0. However, we observe that

E[ZT ] = E
T

∑
i=1

Xi − µET.

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the
result follows.
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