Lecture-26: Martingale Concentration Inequalities

1 Introduction

Consider a probability space (Q,F,P) and a discrete filtration Fo = (F, C F:n € N). Let X : Q — RN
be discrete random process and stopping time 7 : (3 — IN, both adapted to the filtration F,.

Lemma 1.1. If X is a submartingale and T is a bounded stopping time such that P{t <n} =1 then
EX; < EX;: <EX,.

Proof. Since T is bounded, it follows from the optional stopping theorem that E[X.| > [E[X;]. Further,
we observe that {T =k} € Fj and X is a submartingale, and therefore

E[Xn1 =y | Tl = Lirmiy E[Xn | Fi] 2 Lirmpy Xie = XeLr=g).-

It follows that E[X,11—ty] > E[X71;—t}). In addition, Y} _; I,—ty = 1 almost surely, and hence we
observe that

n
EX: =E[Xr Y 1] < Y E[Xal{ropy] = EX,.
k=1 k=1n
O

Theorem 1.2 (Kolmogorov’s inequality for submartingales). For a non-negative submartingale X and

a>0,
P{maxXi > a} < ]E[X"]
i) a

Proof. We define a random time 1, £ inf {i € N : X; > a} and stopping time T £ 7, A n. It follows that,

{maXXi > 61} = Uig[n] {Xi>a}={X>a}.
ie[n]

Using this fact and Markov inequality, we get P {maxie[n] X > a} =P{X;>a} < %. Since T < nis
a bounded stopping time, result follows from the Lemma O

Corollary 1.3. For a martingale X and positive constant a,

E|X EX3
P{maxXi|>a}<|’1|, P{max|Xi|>a}< 5
ie[n] a a

i€[n]

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales,
and by considering the convex functions f(x) = |x| and f(x) = x2. O

Theorem 1.4 (Strong Law of Large Numbers). Let S: Q) — RN be a random walk with i.i.d. step size X
having finite mean . If the moment generating function M(t) = E[e'*"] for random variable X, exists for all

t € Ry, then
P{hms" :y} =1.
neN n
et(u+e)

Proof. For a given € > 0, we define ¢: Ry — Ry for all t € R} as g(t) £ SYIOR Then, it is clear that
¢(0)=1and
M(0) (4 + ) — M'(0)

¢'(0) = M2 (0) =e>0.




Hence, there exists a value t; > 0 such that g(tp) > 1. We now show that Sn—” can be as large as it + € only
finitely often. To this end, note that

Sisprebc {8 (to)" )
n =t =\ M) = 8\0
However, Y, = % =11, Ae/;o(—z) is a product of independent non negative random variables with

unit mean, and hence is a non-negative martingale with sup, EY;, = 1. By martingale convergence
theorem, the limit lim,, <y Y} exists and is finite.
Since g(tp) > 1, it follows from (T) that

P { Sn—n > u + € for an infinite number of n} =0.

Similarly, defining the function f(t) £ e;\(/’;(t;) and noting that since f(0) =1 and f'(0) = —e, there exists

a value ty < 0 such that f(tp) > 1, we can prove in the same manner that
S
p { L u — € for an infinite number of n} =0.
n
Hence, result follows from combining both these results, and taking limit of arbitrary € decreasing to
Zero. O

Definition 1.5. A discrete random process X : QO — RN with distribution function F, £ Fx, for each
n € N, is said to be uniformly integrable if for every € > 0, there is a y. such that for each n € N

E[| Xl 1, 5e}] = /|x\>yg Ix|dE (x) < e.

Lemma 1.6. If X : Q — RN is uniformly integrable then there exists finite M such that E|X,| < M for all
nelN.

Proof. Let y1 be as in the definition of uniform integrability. Then

ElXal= [ |xldFa(x) + ||dF, (x) < y1 + 1.
|x|<y1 [x[>y1
O
1.1 Generalized Azuma Inequality
Lemma 1.7. For a zero mean random variable X with support [—w, B] and any convex function f
B «
Ef(X) < - .
FOX) < g f) + g f(B)
Proof. From convexity of f, any point (X,Y) on the line joining points (—«, f(—«) and (B, f(B)) is
f(B) = f(=)
= — - > .
Y= fla) (X BB £
Result follows from taking expectations on both sides. O

Lemma 1.8. For 6 € [0,1] and 8 £ 1 — 0, we have e + fe—0% < ex*/8,

Proof. Defining a £20 — 1,8 < %, and f(a,B) £ coshp + asinh f — e*B+P*/2 e can write

geéx + fe—0x _ ex2/8 _ (1 —; D‘)e(lftx)ﬁ _ (1 ; @) e~ (1Fa)p _ eﬁz/Z _ Eiaﬁf(w,ﬁ).

Therefore, we need to show that f(«,8) <0 for all « € [-1,1] and B € R. This inequality is true for
|a| =1 and sufficiently large p. Therefore, it suffices to show this for f < M for some M. We take the
partial derivative of f(«, ) with respect to variables a, f and equate it to zero to get the stationary point,

sinh B+ acoshp = (a + ﬁ)e“5+52/2, sinh g = ‘13@“/5+l52/2_

If B # 0, then the stationary point satisfies 1 + acothf =1+ %, with the only solution being g = tanh .

By Taylor series expansion, it can be seen that there is no other solution to this equation other than
B =0. Since f(«,0) =0, the lemma holds true. O



Proposition 1.9. Let X be a zero-mean martingale with respect to filtration Fo, such that —a < X, — X;,—1 < B
for each n € IN. Then, for any positive values a and b

P{X,, > a—+ bn for some n} < exp <_(zxil—1bﬁ)2> . (2)

Proof. Let Xo =0 and ¢ > 0, then we define a random sequence W : QO — RN adapted to filtration F,
such that
W, A ec(Xn—a—bn) — Wn_le_Cbec(X"—X"’l), nez,.

We will show that W is a supermartingale with respect to the filtration F,. It is easy to see that c(W,,) €
Fy, for each n € IN. We can also see that [E |W,| < oo for all n. Further, we observe

E[W,|F_1] = Wy_1e”PE[efKn=Xn-1)|F, 4],

Applying Lemma ?? to the convex function f(x) = %, replacing expectation with conditional expecta-
tion, the fact that E[X,, — X,,_1|F,_1] =0, and setting 6 = ﬁ € [0,1], we obtain that

ElesXn—X01)|5, )< et ae o cwip)i | goclatP)i oPlatp) /8,
a+p
The second inequality follows from Lemma ?? with x = c¢(a + B) and 6 = (a_"ﬁ 5 € [0,1]. Fixing the value
= ﬁ, we obtain

2 2
e—cb-&-ic (“;B) _

— YVn-1-

]E[Wnlffn—l] < Wi
Thus, W is a supermartingale. For a fixed positive integer k, define the bounded stopping time T by
T2inf{n € N: X, >a+bn} Ak

Now, using Markov inequality and optional stopping theorem, we get
__8ab

P{X:>a+bt}=P{W; > 1} <E[W{] <E[Wy] =e “=¢ @7,

The above inequality is equivalent to P{X,, > a + bn for some n <k} < e~ 8ab/ (’”/3)2. Since, the choice
of k was arbitrary, the result follow from letting k — oo. O

Theorem 1.10 (Generalized Azuma inequality). Let X be a zero-mean martingale, such that —a < X,, —
Xy—1 < B forall n € IN. Then, for any positive constant ¢ and integer m

_ 2mc? _ 2mc?
P{Xy > ncforsomen >m} <e @+h?, P{Xy < —ncforsomen>m} <e @7,

Proof. Observe that if there is an n such that n > m and X, > nc then for that n, we have X,, > nc >
¢ + . Using this fact and previous proposition for a = ¢ and b = §, we get

mc ¢ — 22
P{X,, > ncforsomen >m} < P{Xn > - + in for some n} Le @p)*,
This proves first inequality, and second inequality follows by considering the martingale —X. O
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