
Lecture-28: Random Walks

1 Introduction

Definition 1.1. Let X : Ω → XN be a step-size sequence of i.i.d. random variables, where X ⊆ R and
E|Xn| < ∞. We define S0 ≜ 0 and the location of a particle after n steps as Sn ≜ ∑n

i=1 Xi. Then the
sequence S : Ω → RN is called a random walk process.

Example 1.2 (Simple random walk). If the step-size alphabet X = {−1,1}, then the random walk
S : Ω → RN is simple.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative
random variables indicating inter-renewal times, then Sn is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite n∈N, the joint distributions of finite sequence (X1, X2, · · · , Xn)
and the reversed sequence (Xn, Xn−1, · · · , X1) are identical, for any i.i.d. step-size sequence X : Ω → XN.

Proof. Since X : Ω → XN is a sequence of i.i.d. random variables, it is exchangeable. The reversed se-
quence is (Xσ(1), . . . , Xσ(n)) where σ : [n]→ [n] is permutation with σ(i) = n − i + 1.

Corollary 2.2. For any random walk S : Ω → RN, the distributions of Sk and Sn − Sn−k are identical for any
k ∈ [n].

Proof. Using duality principle, we can write the following equality for any x ∈ R and step k ∈ [n]

P{Sk ⩽ x} = P

{
k

∑
i=1

Xi ⩽ x

}
= P

{
k

∑
i=1

Xn−i+1 ⩽ x

}
= P

{
n

∑
i=n−k+1

Xi ⩽ x

}
= P{Sn − Sn−k ⩽ x} .

Corollary 2.3. For any random walk S : Ω → RN, for any finite n ∈ N, the joint distributions of finite sequence

(S1,S2, · · · ,Sn)
d
= (Sn − Sn−1,Sn − Sn−2, · · · ,Sn).

Proposition 2.4. Consider a random walk S : Ω →RN with an i.i.d. step-size sequence X : Ω →RN having pos-
itive mean. The first hitting time of the random walk S to set of positive real numbers, τ ≜min{n ∈ N : Sn > 0},
has finite mean. That is, Eτ < ∞.

Proof. Consider a discrete process T : Ω → ZN
+ , where T0 ≜ 0 and for each k ∈ Z+

Tk+1 ≜ inf
{

n > Tk : Sn ⩽ STk

}
= Tk + inf

{
n ∈ N : STk+n ⩽ STk

}
.

We observe that Tk is a stopping time adapted to the natural filtration of step-size sequence X for each
k ∈ N. Further, we can write the difference Tk+1 − Tk = inf

{
n ∈ N : ∑n

i=1 XTk+i ⩽ 0
}

, From the strong
Markov property for i.i.d. sequences, the distribution of (X1, . . . , Xn) is identical to that of (XTk+1, . . . , XTk+n),
for any finite n ∈ N. Therefore, it follows that STk+n − STk has identical distribution to Sn, and is inde-
pendent of step-size process X stopped at time Tk. Hence, the sequence (Tk − Tk−1 : k ∈ N) is i.i.d. , with
complementary distribution

F̄(m) = P{Tk+1 − Tk > m} = P{T1 > m} = P{S1 > 0,S2 > 0, . . . ,Sm > 0} .
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Therefore, T : Ω → ZN
+ is a renewal process such that {T1 = n} implies that {Sn ⩽ min{0,S1, . . . ,Sn−1}}.

That is, we can write

{T1 = n} = {S1 > 0, . . . ,Sn−1 > 0} ∩ {Sn ⩽ min{0,S1, . . . ,Sn−1}} = {S1 > 0, . . . ,Sn−1 > 0,Sn ⩽ 0} .

Hence, Tk denotes the kth renewal instant corresponding to the random walk Sn hitting kth low. We
can define the inverse counting process N : Ω → ZN

+ for this renewal process as Nn ≜ ∑n
j=11{Tj⩽n}, or

{Nn ⩾ k} = {Tk ⩽ n}. From definition of stopping time τ and duality principle, we can write

P{τ > n}= P(∩n
k=1 {Sk ⩽ 0}) = P(∩n

k=1 {Sn ⩽ Sn−k}) = P{Sn ⩽ min{0,S1, . . . ,Sn−1}}= P(∪n
k=1 {Tk = n}).

The event of renewal process hitting a new low at n is same as some renewal occurring at time n. That
is,

N∞ = ∑
k∈N

1{Tk<∞} = ∑
k∈N

∑
n⩾k

1{Tk=n} = ∑
n∈N

n

∑
k=1

1{Tk=n}.

Therefore, we can write the mean of stopping time τ as

Eτ = 1 + ∑
n∈N

P{τ > n} = 1 + ∑
n∈N

n

∑
k=1

P{Tk = n} = 1 + EN∞.

Since EX1 > 0, it follows from strong law of large numbers that Sn → ∞. Hence, the expected number
of renewals that occur is finite. Elaborate. Thus EN∞ < ∞ and hence Eτ < ∞.

Definition 2.5. Consider a random walk S : Ω → RN with S0 ≜ 0. The number of distinct values of
(S0, · · · ,Sn) is called range, denoted by Rn. We define the first hitting time of random walk S to x ∈ R

as the stopping time
Tx ≜ inf{n ∈ N : Sn = x} .

Proposition 2.6. For a simple random walk, limn∈N
ERn

n = P{T0 = ∞}.

Proof. We can define indicator function for Sk being a distinct number from S0, . . . ,Sk−1, as

Ik ≜ 1{Sk ̸=Sk−1,...,Sk ̸=S0}.

Then, we can write range Rn in terms of indicator Ik as Rn = 1 + ∑n
k=1 Ik. From the duality principle

P(∩k
i=1 {Sk ̸= Sk−i}) = P(∩k

i=1 {Si ̸= 0}), k ∈ N.

Therefore, we can write

ERn = 1 +
n

∑
k=1

P{S1 ̸= 0, . . . ,Sk ̸= 0} =
n

∑
k=0

P{T0 > k} .

Result follows by dividing both sides by n and taking limits.

2.1 Simple random walk

Theorem 2.7 (range). For a simple random walk with P{X1 = 1} = p, the following holds

lim
n∈N

ERn

n
=

{
2p − 1, p > 1

2
2(1 − p)− 1, p ⩽ 1

2 .

Proof. When p = 1
2 , this random walk is recurrent and thus from the Proposition 2.5, we have

P{T0 = ∞} = 0 = lim
n∈N

ERn

n
.

For p > 1
2 , let α ≜ P({T0 < ∞} |{X1 = 1}). Since EX > 0, we know that Sn → ∞ and hence

P({T0 < ∞} |{X1 = −1}) = 1.
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We can write unconditioned probability of return of random walk to 0 as

P{T0 < ∞} = αp + (1 − p).

Since T0 = 2 when S2 = 0, we have P({T0 < ∞} |{S2 = 0}) = 1. Conditioning on X2, from strong law of
large numbers, we get

α= P({T0 < ∞, X2 = 1} |{S1 = 1})+ P({T0 < ∞, X2 = −1} |{S1 = 1}) = pP({T0 < ∞} |{S2 = 2})+ (1− p).

From Markov property and homogeneity of random walk process, it follows that

P({T0 < ∞} |{S2 = 2}) = P(T0 < ∞,S2 = 2)
P(S2 = 2))

=
P(T0 < ∞, T1 < ∞,S2 = 2)

P(S2 = 2))

= P({T0 < ∞} |{T1 < ∞})P({T1 < ∞} |{S2 = 2}) = α2.

Elaborate this. We conclude α = α2 p + 1 − p, and since α < 1 due to transience, we get α = 1−p
p , and

hence the result follows. We can show similarly for the case when p < 1/2.
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