Lecture-28: Random Walks

1 Introduction

Definition 1.1. Let X : QO — XN be a step-size sequence of i.i.d. random variables, where X C R and

E|X,| < . We define Sy £ 0 and the location of a particle after n steps as S, = Y ; X;. Then the
sequence S : QO — RN is called a random walk process.

Example 1.2 (Simple random walk). If the step-size alphabet X = {—1,1}, then the random walk
S:Q — RN is simple.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative
random variables indicating inter-renewal times, then S, is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). Forany finite n € IN, the joint distributions of finite sequence (X1, Xz, -+, Xn)
and the reversed sequence (Xy, X, 1, ,X1) are identical, for any i.i.d. step-size sequence X : Q — XN.

Proof. Since X : QO — XN is a sequence of i.i.d. random variables, it is exchangeable. The reversed se-
quence is (X, (1),---, Xy (y)) Where o : [n] — [n] is permutation with o'(i) =n — i+ 1. O

Corollary 2.2. For any random walk S : QO — RN, the distributions of Sy and S, — S, _y are identical for any
k € [n].

Proof. Using duality principle, we can write the following equality for any x € IR and step k € [n]

k k n
p{skgx}=P{ZXi<X}=P{ZXnméx}zl’{ Y X,-gx}:P{SnSnkgx}.
i=1 i=1

i=n—k+1
O]

Corollary 2.3. For any random walk S : QO — RN, for any finite n € IN, the joint distributions of finite sequence

d
(51152/' o rsn) - (Sn - Snflrsn - Sn—Qr' o /Sn)-

Proposition 2.4. Consider a random walk S : Q — RN with an i.i.d. step-size sequence X : QO — RN having pos-
itive mean. The first hitting time of the random walk S to set of positive real numbers, T = min{n € N : S, > 0},
has finite mean. That is, ET < oo.

Proof. Consider a discrete process T : Q — ZN, where Ty £ 0 and for each k € Z.
Tiy1 éiI‘lf{i’l >Tp: Sy < STk} =Tx +inf{n €IN: STk+n < STk}'

We observe that Ty is a stopping time adapted to the natural filtration of step-size sequence X for each

k € IN. Further, we can write the difference Ty, — Ty = inf {n EN:YL X144 < 0}, From the strong
Markov property for i.i.d. sequences, the distribution of (X1, ..., X;) is identical to that of (X7, 41,..., X1, 1),
for any finite n € IN. Therefore, it follows that St, ,, — S7, has identical distribution to Sy, and is inde-
pendent of step-size process X stopped at time Ty. Hence, the sequence (T — Ty_1 : k € N) is i.i.d. , with
complementary distribution

F(m)=P{Tj41 — Tx >m}=P{Ty >m} =P{S1 >0,5,>0,...,5, > 0}.



Therefore, T : ) — ZY is a renewal process such that {T; = n} implies that {S, < min{0,51,...,5,-1}}.
That is, we can write

{Tl Zi’l} = {51 >0/~--/Sn—1 > 0} N {Sn <min{0,51,...,8n_1}} = {51 >0/---/Sn—l >0,S, <0}

Hence, Tj denotes the kth renewal instant corresponding to the random walk S, hitting kth low. We
can define the inverse counting process N : () — ZN for this renewal process as N, = E]r.’zl 1 {Ti<n} OF

{N, > k} = {Ty < n}. From definition of stopping time T and duality principle, we can write
P{t>n}=P(Ni_1{Sk <0})=P(N{_; {Sn < Sp—k}) =P{Sy <min{0,5y,...,S,_1}} =P(Uj_1 {Tx = n}).

The event of renewal process hitting a new low at 7 is same as some renewal occurring at time #n. That
is,

n
Neo = ) Lficeo} = D, 1 Lmmn) = X Y Limmn)-
keIN keNn>k nelN k=1
Therefore, we can write the mean of stopping time T as
n
Et=1+ ) P{t>n}=1+4 ) ) P{Ty=n}=1+ENe.
neN n€N k=1

Since EX; > 0, it follows from strong law of large numbers that S;, — co. Hence, the expected number
of renewals that occur is finite. Elaborate. Thus [EN, < oo and hence Et < co. O

Definition 2.5. Consider a random walk S : O — RN with Sy £ 0. The number of distinct values of
(So,--+,Sn) is called range, denoted by R,,. We define the first hitting time of random walk S to x € R
as the stopping time

Ty Zinf{n e N:S, = x}.

Proposition 2.6. For a simple random walk, lim, ¢ % = P{Tp = oo}.

Proof. We can define indicator function for Sy being a distinct number from Sy, ...,S5x_1, as

A
k= LS £8k 1, Sc#S0}
Then, we can write range R, in terms of indicator Iy as R, =1+ Y_}_; Ix. From the duality principle
P(NK_, {Sk # Sk_i}) = P(NE_, {S; #0}), keN.

Therefore, we can write

n n
ER, =1+ Y P{S1#0,...,5#0} =) P{Ty>k}.
k=1 k=0

Result follows by dividing both sides by n and taking limits. O

2.1 Simple random walk

Theorem 2.7 (range). For a simple random walk with P{Xy = 1} = p, the following holds

neN n 21—-p)—1, p<

NI—= N[—=

Proof. When p = 1, this random walk is recurrent and thus from the Proposition 2.5, we have

ER,
P{Ty= =0=1 .
{To =co} =0= lim =

For p > %, leta 2 P({Ty < oo} |{X; =1}). Since EX > 0, we know that S,, — co and hence

P({Ty <o} | {X; = ~1}) = 1.



We can write unconditioned probability of return of random walk to 0 as
P{Ty<co} =ap+(1—p).

Since Ty =2 when S, =0, we have P({Tp < oo} | {S, = 0}) = 1. Conditioning on Xj, from strong law of
large numbers, we get

0 =P({Ty < o0, Xy = 1} | {S1 = 1}) + P({To < 00, Xz = ~1} | {81 = 1}) = pP({Ty < 00} | {S2 = 2}) + (1~ p).
From Markov property and homogeneity of random walk process, it follows that

PUTy <o} {522 - A<= Moo T <o

=P({Ty <} [{T} < 00})P({T; < o0} |{S2 =2}) = a’.

Elaborate this. We conclude &« = a?p + 1 — p, and since a < 1 due to transience, we get a = 177’7, and
hence the result follows. We can show similarly for the case when p < 1/2. O
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