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Problem Statement

f1(X )

f2(X )

f3(X )

f4(X )

Requests

To reduce mean access time

I How many fragments for a single message X?

I How to encode and store fi (X ) for fragmented message
X = (X1, . . . ,Xk) at n distributed storage nodes?
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Problem Statement
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Problem
Quantify the latency gains offered by distributed coding

Solution
Coded storage offers scaling gains over replication
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Dominant traffic on Internet
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I Real-Time Entertainment: 64.54% for downstream and 36.56
% for mobile access1

1
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-

phenomena-report-latin-america-and-north-america.pdf
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Centralized Paradigm – Media Vault
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Requests

Potential Issues with Centralized Scheme

I Traffic load: Vault must handle all requests

I Service rate: Large storage entails longer access time

I Not robust to hardware failures or malicious attacks
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Established Solutions – Content Delivery Network
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Routed Requests

Congestion Prevention and Outage Protection

I Mirroring content with local servers

I Media file on multiple servers
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Load Balancing through File Fragmentation

Vault
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Multiple Requests

Partial Completions

Shared Coherent Access

I Availability and better content distribution

I File segments on multiple servers
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Question: Duplication versus MDS Coding

Reduction of access time

I How many fragments should a single message be divided into?

I How should one encode and store at the distributed storage
nodes?
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System Model

File storage

I Each media file divided into k pieces

I Pieces encoded and stored on n servers

Arrival of requests

I Each request wants entire media file

I Poisson arrival of requests with rate λ

Time in the system

I Till the reception of whole file

Service at each server

I IID exponential service time with rate k/n
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Storage Coding – The Centralized MDS Queue

X

Assumptions

I Info: global loads

I FIFO, k out of n copies

I Feedback: cancellation

Challenges

I Intricate QBD Markov process

I Infinite states in n dimensions

I Tightly coupled transitions

exempli gratia: Shah, Lee, Ramchandran (2013), Lee, Shah, Huang, Ramchandran (2017), Vulimiri, Michel,

Godfrey, Shenker (2012), Ananthanarayanan, Ghodsi, Shenker, Stoica (2012) Baccelli, Makowski, Shwartz (1989)
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Storage Coding – (n, k) Fork-Join Model

x

x

X

Assumptions

I Prior info: none†

I FIFO, k out of n copies

I Feedback: cancellation

I Clairvoyance gain

Findings

I Coding exploits diversity
better than redundancy

I E[T ] ≤ split-merge

I Cascade ≤ E[T ]

exempli gratia: Joshi, Liu, Soljanin (2012, 2014), Joshi, Soljanin, Wornell (2015), Sun, Zheng, Koksal, Kim, Shroff

(2015), Kadhe, Soljanin, Sprintson (2016), Li, Ramamoorthy, Srikant (2016)
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(n, k) Fork Join Queue – Parallel Processing of Requests
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I Service rate available to each request is proportional to
number of servers processing the requests in parallel
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State Space Structure

Keeping Track of Partially Fulfilled Requests

I Element of state vector YS(t) is number of users with given
subset S of pieces

Continuous-Time Markov Chain

I Y(t) = {YS(t) : S ⊂ [n], |S | < k} is a Markov process
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State Space Collapse

Theorem
For duplication and coding schemes under priority scheduling and
parallel processing model, collection

S(t) = {S : YS(t) > 0, |S | < k}

of information subsets is totally ordered in terms of set inclusion

Corollary

Let Yi (t) be number of requests with i information symbols at
time t, then

Y(t) = (Y0(t),Y1(t), . . . ,Yk−1(t))

is Markov process
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State Transitions of Collapsed System

Arrival of Requests

I Unit increase in Y0(t) = Y0(t−) + 1 with rate λ

Getting Additional Symbol

I Unit increase in Yi (t) = Yi (t−) + 1

I Unit decrease in Yi−1(t) = Yi−1(t−)− 1

Getting Last Missing Symbol

I Unit decrease in Yk−1(t) = Yk−1(t−)− 1
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Tandem Queue Interpretation (No Empty States)

γ1Y1(t)γ0Y0(t)
λ

Duplication

I When all states
non-empty

I No. servers available
at level i is n/k

I Normalized service
rate at level i

γi = 1 i = 0, . . . , k−1

MDS Coding

I When all states non-empty

I One server available at level
i 6= k − 1

I Normalized service rate at level i

γi =

{
k
n i < k − 1
k
n (n − k + 1) i = k − 1
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Tandem Queue Interpretation (General Case)

γ1Y1(t)γ0Y0(t)
λ

Tandem Queue with Pooled Resources

I Servers with empty buffers help upstream

I Aggregate service at level i becomes

li (t)−1∑
j=i

γj where li (t) = k ∧ {l > i : Yl(t) > 0}

I No explicit description of stationary distribution for
multi-dimensional Markov process
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Bounding and Separating

µ1µ0
λ

Theorem†

When λ < minµi , tandem queue has product form distribution

π(y) =
k−1∏
i=0

λ

µi

(
1− λ

µi

)yi

Uniform Bounds on Service Rate
Transition rates are uniformly bounded by

γi ≤
li (y)−1∑
j=i

γj ≤
k−1∑
j=i

γj , Γi

†F. P. Kelly, Reversibility and Stochastic Networks. New York, NY, USA: Cambridge University Press, 2011.
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Bounds on Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

Γ1Y1(t)Γ0Y0(t)
λ

γ1Y1(t)γ0Y0(t)
λ

Lower Bound
Higher values for service rates
yield lower bound on queue
distribution

π(y) =
k−1∏
i=0

λ

Γi

(
1− λ

Γi

)yi

Upper Bound

Lower values for service rate
yield upper bound on queue
distribution

π(y) =
k−1∏
i=0

λ

γi

(
1− λ

γi

)yi
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Approximating Pooled Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

µ̂1Ŷ1(t)

µ̂0Ŷ0(t)
λ

Independence Approximation with Statistical Averaging

Service rate is equal to base service rate γi plus cascade effect,
averaged over time

µ̂k−1 = γk−1

µ̂i = γi + µ̂i+1π̂i+1(0)
π̂(y) =

k−1∏
i=0

λ

µ̂i

(
1− λ

µ̂i

)yi
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Mean Sojourn Time
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I MDS coding significantly outperforms replication

I Bounding techniques are only meaningful under light loads

I Approximation is accurate over range of loads
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Comparing Replication versus MDS Coding
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Summary and Discussion

Main Contributions

I Analytical framework for study of distributed computation and
storage systems

I Upper and lower bounds to analyze replication and MDS codes

I A tight closed-form approximation to study distributed storage
codes

I MDS codes are better suited for large distributed systems

I Mean access time is better for MDS codes for all code-rates


