Differential Encoding for Real-Time Status Updates

Sanidhay Bhambay Sudheer Poojary **Parimal Parag**

Electrical Communication Engineering Indian Institute of Science

Indian Institute of Technology, Delhi Jan 30, 2017

Why timely update?

Critical to know the status update before decision making

Potential Scenarios

Cyber-physical systems: Environmental/health monitoring

Internet of Things: Real-time actuation/control

Link Model

Context

- Point-to-point communication with limited to no feedback
- Reliability through finite block-length coding

Source Model

- Source state X(t) can be represented by *m* bits
- State difference between n realizations can be represented by k < m bits</p>

Problem Statement

Question

How to encode message at the temporally correlated source for timely update? Should one send the current state or the difference between the current and the past state?

Answer

It depends on the feedback

▶ Finite length code of *n* bits with permutation invariant code

Updates

- True Update: current state X(t) of m bits is encoded to n bit codeword Xⁿ
- ► Incremental Update: the state difference X(t) X(t n) of k bits encoded to n bit codeword Xⁿ

Channel Model

Each transmitted bit of the codeword Xⁿ erased *iid* with probability e

Erasure Distribution

Number of erasures is Binomial with parameter (n, ϵ)

Receiver Timing

Reception at time t + n of n bits sent at time t after n channel uses

Probability of Decoding Failure

- True updates: $p_1 = \mathbb{E}P(n, n m, E)$
- Incremental updates: $p_2 = EP(n, n k, E)$
- ▶ Monotonicity: 0 < p₂ < p₁ < 1</p>

Performance Metric

- Last successfully decoded source state at time t was generated at U(t)
- Information ageA(t) at time t as

$$A(t)=t-U(t).$$

Limiting value of average age

$$\lim_{t\in\mathbb{R}}\frac{1}{t}\sum_{s=1}^{t}A(s)$$

Update Transmission Schemes

True Updates

Each opportunity send true update

Incremental Updates without Feedback

- Periodically send the true update after q updates
- ▶ In between true updates, send *incremental updates*.

Incremental Updates with Feedback

- Send the true update after each decoding failure
- In between true updates, send incremental updates.

Renewal Reward Theorem: I

- Let N(t) be a counting process with event instants S_i for ith event
- Inter-renewal times $T_i = S_i S_{i-1}$ are *iid*
- Reward in *i*th renewal interval R_i is *iid*

Renewal Reward Theorem

For cumulative reward process $R(t) = \sum_{i=1}^{N(t)} R_i$, the limiting average reward

$$\mathbb{E}R = \lim_{t \in \mathbb{R}} \frac{R(t)}{t} = \frac{\mathbb{E}R_i}{\mathbb{E}T_i}$$

Renewal Reward Theorem: II

- ► Time instant *S_i* of the *i*th successful reception of the true update
- ► For all three schemes, the *i*th inter-renewal time T_i = S_i - S_{i-1} is *iid*
- Associated counting process N(t) is a renewal process

Renewal Reward Theorem: III

Accumulated age in *i*th renewal period

$$S(T_i) = \sum_{t=S_{i-1}}^{S_i-1} A(t)$$

is also iid

By renewal reward theorem, the limiting average age is

$$\mathbb{E} A \triangleq \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} A(s) = \mathbb{E} S(T_i) / \mathbb{E} T_i.$$

Age Sample Path

- Inter-renewal time $T_i = nZ_i$
- Number of true update in *i*th renewal interval Z_i
- $\{Z_i : i \in \mathbb{N}\}$ is *iid* geometric with success parameter $(1 p_1)$

Mean Age

Theorem

Limiting average age for the true update scheme is a.s.

$$\mathbb{E}A \triangleq \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} A(s) = (n-1)/2 + n/(1-p_1).$$

Proof.

Cumulative age for *i*th renewal interval is

$$S(nZ_i) = \sum_{j=0}^{nZ_i-1} (n+j) = n^2 Z_i + nZ_i (nZ_i-1)/2.$$

Age Sample Path

- Inter-renewal time $T_i = nqZ_i$
- ► Number of successfully decoded contiguous incremental updates W_i 1 in the *i*th interval

Incremental Upadate without Feedback

Lemma

For each renewal interval, the number of successful receptions $1 \leq \bar{W}_i \leq q$, and is independent of the number of true updates Z_i . Further, the sequence $\{\bar{W}_i : i \in \mathbb{N}\}$ is *iid* and distributed as truncated geometric

$$\Pr\{\bar{W}_i = k\} = \begin{cases} (1 - p_2)^{k-1} p_2, & 1 \le k < q, \\ (1 - p_2)^{q-1}, & k = q. \end{cases}$$

Mean Age

Theorem

Limiting average age for the incremental updates without feedback is

$$\mathbb{E}\bar{A} \triangleq \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} \bar{A}(s) = \frac{\mathbb{E}T_i^2}{2\mathbb{E}T_i} + \frac{n^2 \mathbb{E}\bar{W}_i(\bar{W}_i - 1)}{2\mathbb{E}T_i} - \left(n\mathbb{E}(\bar{W}_i - 2) + \frac{1}{2}\right).$$

Proof.

Cumulative age $S(T_i)$ in the *i*th renewal interval is

$$S(T_i) = \sum_{j=1}^{\bar{W}_i - 1} \sum_{k=0}^{n-1} (n+k) + \sum_{j=n(\bar{W}_i - 1)}^{T_i - 1} (n+j-n(\bar{W}_i - 1)),$$

= $\frac{n^2 \bar{W}_i(\bar{W}_i - 1)}{2} + \frac{T_i^2}{2} - \left(n(\bar{W}_i - 2) + \frac{1}{2}\right) T_i.$

Age Sample Path

- Inter-renewal time $T_i = nZ_i + nW_i$
- Number of incremental updates W_i in ith renewal interval
- $\{W_i : i \in \mathbb{N}\}$ are *iid* geometric with success parameter p_2

Mean Age

Theorem

Limiting average age for the incremental updates with feedback is

$$\mathbb{E}\hat{A} \triangleq \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} \hat{A}(s) = \frac{(3n-1)}{2} + \frac{n(\mathbb{E}Z_i^2 + \mathbb{E}Z_i)}{2(\mathbb{E}W_i + \mathbb{E}Z_i)}$$

Proof.

Cumulative age $S(T_i)$ over the *i*th renewal period T_i is

$$S(T_i) = \sum_{j=1}^{W_i-1} \sum_{k=0}^{n-1} (n+k) + \sum_{k=0}^{T_i-n(W_i-1)-1} (n+k)$$

= $(3n-1)T_i/2 + n^2(Z_i+1)Z_i/2.$

Analytical Comparison

Theorem

The mean age for the three schemes satisfy,

 $\mathbb{E}\hat{A} \leq \mathbb{E}A \leq \mathbb{E}\bar{A}.$

Numerical Comparision

Random Coding Scheme

Probability of decoding failure is

$$P(n, n-r, E) = 1 - \prod_{i=0}^{E-1} (1 - 2^{i-(n-r)}).$$

- Number of erasure E has binomial distribution with parameter (n, \epsilon)
- For true update $p_1 = \mathbb{E}P(n, n m, E)$ and incremental update $p_2 = \mathbb{E}P(n, n k, E)$.

n = 120, k = 10, $\epsilon = 0.001$ and $q \in \{2, 6\}$

 $n = 120, m = 105, \epsilon = 0.1 \text{ and } q \in \{2, 6\}$

 $n = 120, m = 105 \text{ and } q \in \{2, 6\}$

Discussion and Concluding Remarks

Main Contributions

- Integration of coding and renewal techniques to study timely communication for delay-sensitive traffic
- ► We model channel unreliability by the erasure channel
- Incremental updates only when there is feedback availability

Avenues of Future Research

- Extend results to structured sources
- Extend results to correlated finite-state erasure and error channels
- Impact of other coding schemes on timeliness