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Problem Statement
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Question for reducing mean access time

» How many fragments k for a single message
X =(X1,...,Xk)?

» How to encode fragments f;(X) and store them at n
distributed storage nodes?
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Problem Statement
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Problem
Quantify the latency gains offered by distributed coding.

Solution
Coded storage offers scaling gains over replication.
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Dominant traffic on Internet
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» Real-Time Entertainment: 64.54% for downstream and 36.56

% for mobile access!

! https://www.sandvine.com/downloads/general /global-internet-phenomena/2015/global-internet-
phenomena-report-latin-america-and-north-america.pdf

3/ 20



Centralized Paradigm — Media Vault
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Potential Issues with Centralized Scheme

» Traffic load: Vault must handle all requests
» Service rate: Large storage entails longer access time

» Not robust to hardware failures or malicious attacks
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Established Solutions — Content Delivery Network
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Congestion Prevention and Outage Protection

» Mirroring content with local servers

» Media file on multiple servers
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Load Balancing through File Fragmentation
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Shared Coherent Access

» Availability and better content distribution

» File segments on multiple servers
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Question: Duplication versus MDS Coding
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Reduction of access time

» How many fragments should a single message be divided into?

» How should one encode and store at the distributed storage
nodes?
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System Model

File storage

» Each media file divided into k pieces

» Pieces encoded and stored on n servers
Arrival of requests

» Each request wants entire media file

» Poisson arrival of requests with rate A

Time in the system

» Till the reception of whole file

Service at each server

» |ID exponential service time with rate k/n
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Parallel Processing of Requests
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» Service rate available to each request is proportional to
number of servers processing the requests in parallel
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State Space Structure
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Keeping Track of Partially Fulfilled Requests

> Label distinct pieces with integers

» Element of state vector Ys(t) is number of users with given
subets S of pieces

Continuous-Time Markov Chain
» Y(t) ={Ys(t): S C[n]} is a Markov process

» Markov process with local transitions
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State Space Collapse

Theorem
For duplication and coding schemes under priority scheduling and
parallel processing model, collection

S(t)={S:Ys(t)>0,|S| < k}
of information subsets is totally ordered in terms of set inclusion

Corollary

Let Yi(t) be number of requests with i information symbols at
time t, then

Y(t) = (Yo(t), Yi(2),. .., Yk_1(1))

is Markov process
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State Transitions of Collapsed System

. 0 00 000
Arrival of Requests

» Unit increase in Yo(t) = Yo(t—) + 1 with rate A

Getting Additional Symbol

» Unit increase in Yj(t) = Yi(t—) +1
» Unit decrease in Y;_1(t) = Yi_1(t—) — 1

Getting Last Missing Symbol

» Unit decrease in Yi_1(t) = Yi_1(t—) —1
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Tandem Queue Interpretation (No Empty States)

BRI © Yi(o)

Duplication MDS Coding

» When all states

» When all states non-empty
non-empty

_ » One server available at level
| 4 .
No. servers available itk—1

at level i is n/k . , ,
) / _ > Normalized service rate at level i
> Normalized service

rate at level i i<k-—1
Vi =

(n—k+1) i=k-1

SIxsix

vi=1 i=0,... k-1
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Tandem Queue Interpretation (General Case)

Tandem Queue with Pooled Resources

» Servers with empty buffers help upstream

> Aggregate service at level i becomes

/,'(t)fl
Yy where  fi(t)=kA{l>i:Y(t)>0}
j=i

» No explicit description of stationary distribution for
multi-dimensional Markov process

14/ 20



A
—_

Bounding and Separating
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When A < min u;, tandem queue has product form distribution
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Uniform Bounds on Service Rate
Transition rates are uniformly bounded by

=
I
=

-1
i

é
IN
2

=2
IA
-
I

.
I

TF. P Kelly, Reversibility and Stochastic Networks. New York, NY, USA: Cambridge University Press, 2011.
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Bounds on Tandem Queue
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Lower Bound Upper Bound
Higher values for service rates Lower values for service rate
yield lower bound on queue yield upper bound on queue
distribution distribution
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Approximating Pooled Tandem Queue

Independence Approximation with Statistical Averaging

Service rate is equal to base service rate «y; plus cascade effect,
averaged over time

(o 1 = _ A\ Yi
Hk—1 = Vk-1 HA<1_>
fliy17 —o M

fii = i + fit17i+1(0)
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Mean Sojourn Time

Replication Coding (4,2) MDS Code
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» MDS coding significantly outperforms replication
» Bounding techniques are only meaningful under light loads

» Approximation is accurate over range of loads
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Comparing Replication versus MDS Coding
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Mean Sojourn Time

Number of Servers

Arrival rate 0.3 units and coding rate n/k = 2
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Summary and Discussion

Main Contributions

>

Analytical framework for study of distributed computation and
storage systems

Upper and lower bounds to analyze replication and MDS codes

A tight closed-form approximation to study distributed storage
codes

MDS codes are better suited for large distributed systems

Mean access time is better for MDS codes for all code-rates
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