
1/ 34

Coding in Distributed Storage
and Compute Systems

Parimal Parag

Electrical Communication Engineering
Indian Institute of Science

Alliance University
September 11, 2018



2/ 34

Evolving Digital Landscape

Information Theoretic Regime

Emerging Applications

D
el

ay
T

ol
er

an
ce

Rate Requirements

Voice Cloud Storage Video Streaming

Network Printer

Email

Browsing

File Transfer



3/ 34

Dominant traffic on Internet

Peak Period Traffic Composition (North America)

Upstream Downstream Aggregate
0

20

40

60

80

100
Real-Time Entertainment

Web Browsing
Marketplaces

Filesharing
Tunneling

Social Networking
Storage

Communications
Gaming

Outside Top 5

I Real-Time Entertainment: 64.54% for downstream and 36.56
% for mobile access1

1
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-

phenomena-report-latin-america-and-north-america.pdf



4/ 34

Centralized Paradigm – Media Vault

Vault

File 1

File 2

File 3

File 4

File 5

File 6

Requests

Potential Issues with Centralized Scheme

I Traffic load: Vault must handle all requests for all files

I Service rate: Large storage entails longer access time

I Not robust to hardware failures or malicious attacks



5/ 34

Alternative to Centralized Paradigm

File 1

File 2

File 3

File 4

File 5
File 6

File 7 File 8

File 9

File 10

File 11

Distributed Systems

I Autonomous nodes with local memory

I Interaction between the connected nodes

I Nodes with local knowledge of input and network topology

I Heterogeneous and potentially time varying system topology



6/ 34

Distributed Systems

File 1

File 2

File 3

File 4

File 5
File 6

File 7 File 8

File 9

File 10

File 11

Desirable Properties

I Scalability: Linear or sub-linear increase in number of nodes

I Resilience: Able to withstand local node failures

I Efficiency: Minimum interaction between nodes

I Fairness: Almost equal load at all nodes



7/ 34

Examples

Distributed Storage

I Content streaming: NetFlix, HotStar, Eros Now, YouTube,
Hulu, Amazon Prime Video

I Cloud storage: GitHub, DropBox, iCloud, OneDrive,
UbuntuOne

I Cloud service: Facebook, Google Suite, Office365

Distributed Computation

I Cloud computing: Amazon Web Services, Microsoft Azure,
Google Search

I Cluster computing: Hadoop, Spark

I Distributed database: Aerospike, Cassandra, Couchbase,
Druid



8/ 34

Distributed System Architecture

Classification

I Client-server: Online banking, Web servers, e-commerce

I Peer-to-peer: Bitcoin, OS distribution

I Hybrid: Spotify, content delivery in ISPs

Interaction

I Master-slave: Message passing with local memory

I Database-centric: Relation database for interaction



9/ 34

Content Delivery Network

Vault

File 1

File 2

File 3

File 4

File 5

File 6

File 1 File 3 File 5

File 1 File 4 File 6

File 2 File 3 File 6

File 2 File 4 File 5

Routed Requests

Redundancy for resilience

I Mirroring content with local servers

I Media file on multiple servers



10/ 34

Load Balancing through File Fragmentation

Vault

File 1A File 1B

File 2A File 2B

File 3A File 3B

File 4A File 4B

File 5A File 5B

File 6A File 6B

File 1A File 3A File 5A

File 2B File 4B File 6B

File 1A File 4A File 6A

File 2B File 3B File 5B

File 2A File 3A File 6A

File 1B File 4B File 5B

File 2A File 4A File 5A

File 1B File 3B File 6B

Multiple Requests

Partial Completions

Shared Coherent Access

I Availability and better content distribution

I File segments on multiple servers



11/ 34

Problem Statement

f1(X )

f2(X )

f3(X )

f4(X )

Requests

Compute mean access time to download single message m

I with number of fragments k such that m = (m1, . . . ,mk)

I with encoding (f1(m), . . . , fn(m)), and fi (m) stored at node i



12/ 34

Symmetric Codes

A

A

B

B

Requests

Replication (n, k)

Piece i stored at n/k servers

A

B

A+B

A-B

Requests

MDS (n, k)

Whole message can be decoded
by any k out of n servers



13/ 34

System Model

File storage

I Each media file divided into k pieces

I Pieces encoded and stored on n servers

Arrival of requests

I Each request wants entire media file

I Poisson arrival of requests with rate λ

Time in the system

I Till the reception of whole file

Service at each server

I IID exponential service time with rate µ = k/n



14/ 34

Storage Coding – (n, k) Fork-Join Model

x

x

X

exempli gratia: Joshi, Liu, Soljanin (2012, 2014), Joshi, Soljanin, Wornell (2015), Sun, Zheng, Koksal, Kim, Shroff

(2015), Kadhe, Soljanin, Sprintson (2016), Li, Ramamoorthy, Srikant (2016)



15/ 34

Prior Work and Contributions

Kannan et al: join k queues for replication and MDS codes

I Numerical bounds using block Markov chains

I Trade-off between numerical accuracy and computational
effort

Soljanin, Wornell et al: fork-join (n, k) queues for MDS codes

I Closed-form upper and lower bounds

I Loose bounds for most of the rate region

This work: fork-join (n, k) queues for all symmetric codes

I Tight closed-form approximations for all rate regions

I Stability region for all symmetric codes

I Delay minimising symmetric code



16/ 34

Coding Model

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

I Information sets I = {S ⊂ [n] : |S | = k , fS reconstructs m}
I Observed servers T ⊂ S for some info set S ∈ I
I Useful servers M(T ) =

⋃
S∈I S \ T

I Symmetric codes: number useful servers N|T | = |M(T )|



17/ 34

Symmetric Codes

A

A

B

B

Requests

Replication (n, k)

Number of useful servers
Ni = (k − i)n/k

A

B

A+B

A-B

Requests

MDS (n, k)

Number of useful servers
Ni = (n − i)



18/ 34

Single Request

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

I T(t) = {T ⊂ S : S ∈ I} is a Markov process



19/ 34

Two Requests

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

I T(t) = {(T1,T2) ⊂ S × S : S ∈ I} is a Markov process

I |T1| ≥ |T2| and MT1 ⊂ MT2

I FIFO service: number of available servers MT2 \MT1



20/ 34

State Transitions

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

A

B

C

A+B

B+C

A+C

I Arrival rate: (T1,T2)→ (T1,T2, ∅) at rate λ

I Departure rate: (T1,T2)→ (T2) at rate N|T1|µ

I Service rate: (T1,T2)→ (T1,T2 ∪ B) at rate µ



21/ 34

State Space Collapse

A

B

C

A+B

B+C

A+C

I L(t) = {(`1, . . . , `r ) : `i = |Ti |, `1 ≥ `2} is a Markov process

I Arrival: (`1, . . . , `r )→ (`1, . . . , `r , 0) at rate λ

I Departure: (`1, . . . , `r )→ (`2, . . . , `r ) at rate N`1µ

I Service: (. . . , `i , . . . )→ (. . . , `i + 1, . . . ) at rate (N`i − N`i+1 )µ



22/ 34

State Space Transformation

A

B

C

A+B

B+C

A+C

Y0 Y1 Y2

I Y(t) = {Y0,Y1, . . . ,Yk−1} is a Markov process

I Arrival: Y0 → Y0 + 1 at rate λ

I Departure: Yk−1 → Yk−1 − 1 at rate Nk−1µ

I Service: (Yi−1,Yi )→ (Yi−1 − 1,Yi + 1) at rate (Ni−1 − Nli−1 )µ



23/ 34

State Transitions of Collapsed System

Arrival of requests at rate λ

I Unit increase in Y0(t) = Y0(t−) + 1 with rate λ

Getting additional symbol at rate γi = (Ni−1 − Ni)µ

I Unit increase in Yi (t) = Yi (t−) + 1

I Unit decrease in Yi−1(t) = Yi−1(t−)− 1

Getting last missing symbol at rate γk−1 = Nk−1µ

I Unit decrease in Yk−1(t) = Yk−1(t−)− 1



24/ 34

Tandem Queue Interpretation (No Empty States)

γ1Y1(t)γ0Y0(t)
λ

Duplication

I n/k available servers at level i
I Normalized service rate at

level i
γi = 1

MDS Coding

I Single server at level i 6= k − 1
I Normalized service rate at level i

γi =

{
k
n i < k − 1
k
n (n − k + 1) i = k − 1



25/ 34

Tandem Queue Interpretation (General Case)

γ1Y1(t)γ0Y0(t)
λ

Tandem Queue with Pooled Resources

I Servers with empty buffers help upstream

I Aggregate service at level i becomes

li (t)−1∑
j=i

γj where li (t) = k ∧ {l > i : Yl(t) > 0}

I No explicit description of stationary distribution for
multi-dimensional Markov process



26/ 34

Stability Region For Pooled Tandem Queues

Γ2Y1(t)Γ1Y1(t)Γ0Y0(t)
3λ 2λ λ

For a distributed storage system with symmetric codes and
fork-join queues with FCFS service, the stability region is equal to

λ < min

{
Γi

k − i
: i ∈ {0, . . . , k − 1}

}
,

where Γi ,
∑k−1

j=i γj is the useful service rate for level i .



27/ 34

Bounding and Separating

µ1µ0
λ

Theorem†

When λ < minµi , tandem queue has product form distribution

π(y) =
k−1∏
i=0

λ

µi

(
1− λ

µi

)yi

Uniform Bounds on Service Rate
Transition rates are uniformly bounded by

γi ≤
li (y)−1∑
j=i

γj ≤
k−1∑
j=i

γj , Γi

†F. P. Kelly, Reversibility and Stochastic Networks. New York, NY, USA: Cambridge University Press, 2011.



28/ 34

Bounds on Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

Γ1Y1(t)Γ0Y0(t)
λ

γ1Y1(t)γ0Y0(t)
λ

Lower Bound
Higher values for service rates
yield lower bound on queue
distribution

π(y) =
k−1∏
i=0

λ

Γi

(
1− λ

Γi

)yi

Upper Bound

Lower values for service rate
yield upper bound on queue
distribution

π(y) =
k−1∏
i=0

λ

γi

(
1− λ

γi

)yi



29/ 34

Mean Sojourn Time

0.1 0.2 0.4 0.6 0.8 0.95
0

5

10

15

Arrival Rate

Replication Coding

Upper Bound
Simulation
Approximation
Lower Bound



30/ 34

Mean Sojourn Time

0.1 0.2 0.4 0.6 0.8 0.95
0

5

10

15

Arrival Rate

(4, 2) MDS Code

Upper Bound
Simulation
Approximation
Lower Bound



31/ 34

Approximating Pooled Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

µ̂1Ŷ1(t)

µ̂0Ŷ0(t)
λ

Independence Approximation with Statistical Averaging

Service rate is equal to base service rate γi plus cascade effect,
averaged over time

µ̂k−1 = γk−1

µ̂i = γi + µ̂i+1π̂i+1(0)
π̂(y) =

k−1∏
i=0

λ

µ̂i

(
1− λ

µ̂i

)yi



32/ 34

Delay Minimizing Storage Code

µ̂1Ŷ1(t)µ̂0Ŷ0(t)
λ

Optimizer to the objective function

γ∗ = arg min

{
k−1∑
i=1

1

Γi − (k − i)λ
: γ ∈ A

}
.

The MDS coding scheme minimizes the approximate mean sojourn
time for a fork-join queueing system with identical exponential
servers among all symmetric codes.



33/ 34

Comparing Replication versus MDS Coding

2 4 8 12 16 20
1

2

3

4

5

Number of Servers

M
ea
n
S
o
jo
u
rn

T
im

e

Repetition Simulation

Repetition Approximation

MDS Simulation

MDS Approximation

Arrival rate 0.3 units and coding rate n/k = 2



34/ 34

Summary and Discussion

Main Contributions

I Analytical framework for study of distributed computation and
storage systems

I Upper and lower bounds to analyze replication and MDS codes

I A tight closed-form approximation to study distributed storage
codes

I MDS codes are better suited for large distributed systems

I Mean access time is better for MDS codes for all code-rates


