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Dominant traffic on Internet
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Outside Top 5

I Real-Time Entertainment: 64.54% for downstream and 36.56
% for mobile access1

1
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-

phenomena-report-latin-america-and-north-america.pdf
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Centralized Paradigm – Media Vault
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Potential Issues with Centralized Scheme

I Traffic load: Vault must handle all requests for all files

I Service rate: Large storage entails longer access time

I Not robust to hardware failures or malicious attacks
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Alternative to Centralized Paradigm
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Distributed Systems

I Autonomous nodes with local memory

I Interaction between the connected nodes

I Nodes with local knowledge of input and network topology

I Heterogeneous and potentially time varying system topology
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Distributed Systems
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Desirable Properties

I Scalability: Linear or sub-linear increase in number of nodes

I Resilience: Able to withstand local node failures

I Efficiency: Minimum interaction between nodes

I Fairness: Almost equal load at all nodes
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Examples

Distributed Storage

I Content streaming: NetFlix, HotStar, Eros Now, YouTube,
Hulu, Amazon Prime Video

I Cloud storage: GitHub, DropBox, iCloud, OneDrive,
UbuntuOne

I Cloud service: Facebook, Google Suite, Office365

Distributed Computation

I Cloud computing: Amazon Web Services, Microsoft Azure,
Google Search

I Cluster computing: Hadoop, Spark

I Distributed database: Aerospike, Cassandra, Couchbase,
Druid



8/ 34

Distributed System Architecture

Classification

I Client-server: Online banking, Web servers, e-commerce

I Peer-to-peer: Bitcoin, OS distribution

I Hybrid: Spotify, content delivery in ISPs

Interaction

I Master-slave: Message passing with local memory

I Database-centric: Relation database for interaction
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Content Delivery Network
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Routed Requests

Redundancy for resilience

I Mirroring content with local servers

I Media file on multiple servers
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Load Balancing through File Fragmentation
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Multiple Requests

Partial Completions

Shared Coherent Access

I Availability and better content distribution

I File segments on multiple servers
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Problem Statement
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Requests

Compute mean access time to download single message m

I with number of fragments k such that m = (m1, . . . ,mk)

I with encoding (f1(m), . . . , fn(m)), and fi (m) stored at node i
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Symmetric Codes
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Whole message can be decoded
by any k out of n servers
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System Model

File storage

I Each media file divided into k pieces

I Pieces encoded and stored on n servers

Arrival of requests

I Each request wants entire media file

I Poisson arrival of requests with rate λ

Time in the system

I Till the reception of whole file

Service at each server

I IID exponential service time with rate µ = k/n
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Storage Coding – (n, k) Fork-Join Model

x
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exempli gratia: Joshi, Liu, Soljanin (2012, 2014), Joshi, Soljanin, Wornell (2015), Sun, Zheng, Koksal, Kim, Shroff

(2015), Kadhe, Soljanin, Sprintson (2016), Li, Ramamoorthy, Srikant (2016)
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Prior Work and Contributions

Kannan et al: join k queues for replication and MDS codes

I Numerical bounds using block Markov chains

I Trade-off between numerical accuracy and computational
effort

Soljanin, Wornell et al: fork-join (n, k) queues for MDS codes

I Closed-form upper and lower bounds

I Loose bounds for most of the rate region

This work: fork-join (n, k) queues for all symmetric codes

I Tight closed-form approximations for all rate regions

I Stability region for all symmetric codes

I Delay minimising symmetric code
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Coding Model
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I Information sets I = {S ⊂ [n] : |S | = k , fS reconstructs m}
I Observed servers T ⊂ S for some info set S ∈ I
I Useful servers M(T ) =

⋃
S∈I S \ T

I Symmetric codes: number useful servers N|T | = |M(T )|
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Symmetric Codes
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Single Request
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I T(t) = {T ⊂ S : S ∈ I} is a Markov process
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Two Requests
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I T(t) = {(T1,T2) ⊂ S × S : S ∈ I} is a Markov process

I |T1| ≥ |T2| and MT1 ⊂ MT2

I FIFO service: number of available servers MT2 \MT1
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State Transitions
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I Arrival rate: (T1,T2)→ (T1,T2, ∅) at rate λ

I Departure rate: (T1,T2)→ (T2) at rate N|T1|µ

I Service rate: (T1,T2)→ (T1,T2 ∪ B) at rate µ
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State Space Collapse
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I L(t) = {(`1, . . . , `r ) : `i = |Ti |, `1 ≥ `2} is a Markov process

I Arrival: (`1, . . . , `r )→ (`1, . . . , `r , 0) at rate λ

I Departure: (`1, . . . , `r )→ (`2, . . . , `r ) at rate N`1µ

I Service: (. . . , `i , . . . )→ (. . . , `i + 1, . . . ) at rate (N`i − N`i+1 )µ
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State Space Transformation
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Y0 Y1 Y2

I Y(t) = {Y0,Y1, . . . ,Yk−1} is a Markov process

I Arrival: Y0 → Y0 + 1 at rate λ

I Departure: Yk−1 → Yk−1 − 1 at rate Nk−1µ

I Service: (Yi−1,Yi )→ (Yi−1 − 1,Yi + 1) at rate (Ni−1 − Nli−1 )µ
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State Transitions of Collapsed System

Arrival of requests at rate λ

I Unit increase in Y0(t) = Y0(t−) + 1 with rate λ

Getting additional symbol at rate γi = (Ni−1 − Ni)µ

I Unit increase in Yi (t) = Yi (t−) + 1

I Unit decrease in Yi−1(t) = Yi−1(t−)− 1

Getting last missing symbol at rate γk−1 = Nk−1µ

I Unit decrease in Yk−1(t) = Yk−1(t−)− 1
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Tandem Queue Interpretation (No Empty States)

γ1Y1(t)γ0Y0(t)
λ

Duplication

I n/k available servers at level i
I Normalized service rate at

level i
γi = 1

MDS Coding

I Single server at level i 6= k − 1
I Normalized service rate at level i

γi =

{
k
n i < k − 1
k
n (n − k + 1) i = k − 1
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Tandem Queue Interpretation (General Case)

γ1Y1(t)γ0Y0(t)
λ

Tandem Queue with Pooled Resources

I Servers with empty buffers help upstream

I Aggregate service at level i becomes

li (t)−1∑
j=i

γj where li (t) = k ∧ {l > i : Yl(t) > 0}

I No explicit description of stationary distribution for
multi-dimensional Markov process
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Stability Region For Pooled Tandem Queues

Γ2Y1(t)Γ1Y1(t)Γ0Y0(t)
3λ 2λ λ

For a distributed storage system with symmetric codes and
fork-join queues with FCFS service, the stability region is equal to

λ < min

{
Γi

k − i
: i ∈ {0, . . . , k − 1}

}
,

where Γi ,
∑k−1

j=i γj is the useful service rate for level i .
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Bounding and Separating

µ1µ0
λ

Theorem†

When λ < minµi , tandem queue has product form distribution

π(y) =
k−1∏
i=0

λ

µi

(
1− λ

µi

)yi

Uniform Bounds on Service Rate
Transition rates are uniformly bounded by

γi ≤
li (y)−1∑
j=i

γj ≤
k−1∑
j=i

γj , Γi

†F. P. Kelly, Reversibility and Stochastic Networks. New York, NY, USA: Cambridge University Press, 2011.
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Bounds on Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

Γ1Y1(t)Γ0Y0(t)
λ

γ1Y1(t)γ0Y0(t)
λ

Lower Bound
Higher values for service rates
yield lower bound on queue
distribution

π(y) =
k−1∏
i=0

λ

Γi

(
1− λ

Γi

)yi

Upper Bound

Lower values for service rate
yield upper bound on queue
distribution

π(y) =
k−1∏
i=0

λ

γi

(
1− λ

γi

)yi
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Mean Sojourn Time
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Approximating Pooled Tandem Queue

γ1Y1(t)γ0Y0(t)
λ

µ̂1Ŷ1(t)

µ̂0Ŷ0(t)
λ

Independence Approximation with Statistical Averaging

Service rate is equal to base service rate γi plus cascade effect,
averaged over time

µ̂k−1 = γk−1

µ̂i = γi + µ̂i+1π̂i+1(0)
π̂(y) =

k−1∏
i=0

λ

µ̂i

(
1− λ

µ̂i

)yi
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Delay Minimizing Storage Code

µ̂1Ŷ1(t)µ̂0Ŷ0(t)
λ

Optimizer to the objective function

γ∗ = arg min

{
k−1∑
i=1

1

Γi − (k − i)λ
: γ ∈ A

}
.

The MDS coding scheme minimizes the approximate mean sojourn
time for a fork-join queueing system with identical exponential
servers among all symmetric codes.
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Comparing Replication versus MDS Coding
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Summary and Discussion

Main Contributions

I Analytical framework for study of distributed computation and
storage systems

I Upper and lower bounds to analyze replication and MDS codes

I A tight closed-form approximation to study distributed storage
codes

I MDS codes are better suited for large distributed systems

I Mean access time is better for MDS codes for all code-rates


