# Real-Time Status Updates for Markov Sources over Unreliable Channels

Parimal Parag

Joint work with Sanidhay Bhambay and Sudheer Poojary



## Real-time decision systems



- Cyber-physical systems: Environmental/health monitoring
- Internet of Things: Real-time actuation/control
- Critical to know the status update before decision making

Status updates over unreliable channels



#### Question

How to encode message at the temporally correlated source for timely update over an iid binary symmetric erasure channel?

Quantifying timeliness: delay versus age



#### Information packet delay at transmitter

If the arrival rate is higher than the service rate, then unstable queue and infinite delay

#### Information age at receiver

- Generation time of last received information packet U(t)
- Age of information A(t) = t U(t)
- Finite average age for always on source

# Prior work

- 'Age of information' introduced by Kaul and R. Yates in 2012
- Different queueing models and queueing disciplines are used to analyze update system [A. Ephermides, N. B. Shroff, Y. Sun, E. Modiano, M. Costa]
- M/M/1 queue with FCFS/LCFS [Kaul, Gruster, S. Kompella, R. Yates]

### Summary

- Limiting average age minimizing update rate
- Channel uncertainty modeled by random service time
- A scheduled update is delivered successfully

## Source Model



► Discrete sampled source  $M_j = M(jn) \in \Delta_m$  Markov with transition matrix P and invariant distribution  $\nu$ 

## Update Protocol



Special case when  $\Delta_k = 0$ , always send actual update

## **Problem Statement**

#### Question

For a fixed code-length n, find the code-rate  $\frac{k}{n}$  for the given Markov source  $(M_j \in \Delta_m : j \in \mathbb{N})$  over iid binary symmetric erasure channel  $\sim$  Bernoulli $(\epsilon)$  that minimizes the limiting average age

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^{T}A(t).$$

# Optimal code-rate



• Code length n = 20, number of information bits m = 15





#### Bit-wise erasure channel

▶ Number of erasures per codeword  $E \sim$  Binomial  $(n, \epsilon)$ 

### Probability of decoding failure

- Actual state updates:  $p_a = \mathbb{E}P(n, n m, E)$
- ▶ Incremental updates:  $p_d = \mathbb{E}P(n, n k, E)$

### Information age process



Age determined by scaled samples (A<sub>j</sub> = <sup>1</sup>/<sub>n</sub>A(jn + 1) : j ∈ ℕ)
 Mean average age is <sup>E∑t=1</sup>/<sub>ET1</sub>A(t) = nEA<sub>j</sub> + <sup>(n-1)</sup>/<sub>2</sub>

## Age process for incremental updates



▶ Decoding success iff  $A_i = 1$ , Bernoulli indicators with  $p_a, p_d$ 

- ► Incremental update if  $\{A_{j-1} = 1\} \cap \{M_j M_{j-1} \in \Delta_k\}$
- ▶ Process  $((M_j, A_j) : j \in \mathbb{N})$  is jointly Markov

### Highly Correlated Source

► 
$$M_j - M_{j-1} \in \Delta_k$$
 almost surely, then  
 $P_i(\Delta_k) = \sum_{l-i \in +\Delta_k} P_{il} = 1$  or  $\tilde{D} = (p_a - p_d)P$ 

$$\begin{bmatrix} P_{00} & P_{01} & 0 & 0 & \dots & \dots \\ P_{10} & P_{11} & P_{12} & 0 & \dots & \dots \\ 0 & P_{21} & P_{22} & P_{23} & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \end{bmatrix}$$

#### Uniform Markov Source

• 
$$P_i(\Delta_k)$$
 is identical to all states *i*

$$\begin{bmatrix} P_{00} & P_{01} & P_{02} & P_{03} & \dots & \dots \\ P_{10} & P_{11} & P_{12} & P_{13} & \dots & \dots \\ P_{20} & P_{21} & P_{22} & P_{23} & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \end{bmatrix}$$

## Quasi birth-death process



- ▶ Transition probability  $(i, q) \rightarrow (j, q + 1)$ :  $p_a P_{ij}$
- ► Transition probability  $(i, 1) \rightarrow (i, 2)$ : - $(p_a - p_d)P_{ij}1_{\{j-i \in \Delta_k\}} + p_aP_{ij}$

### Block transitions



$$\begin{bmatrix} p_a P + \tilde{D} & p_a P - \tilde{D} & 0 & 0 & \dots & \dots \\ \bar{p}_a P & 0 & p_a P & 0 & \dots & \dots \\ \bar{p}_a P & 0 & 0 & p_a P & \dots & \dots \\ \bar{p}_a P & 0 & 0 & 0 & p_a P & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \end{bmatrix}$$

#### Equilibrium distribution

Geometric form in sampled-scaled age

$$\pi_q = \bar{p}_a \nu (I - \tilde{D})^{-1} (p_a P - \tilde{D}) (p_a P)^{q-2}, \qquad q \geq 2.$$

Mean sampled and scaled age

$$\mathbb{E} A = \langle -\nu (I - \tilde{D})^{-1}, \mathbf{1} \rangle + 1 + \frac{1}{\bar{p}_a}.$$

Tail decay-rate

$$heta = -\lim_{q o \infty} rac{1}{q} \log \sum_{u=q}^\infty \langle \pi_u, \mathbf{1} 
angle = \log rac{1}{p_a}.$$

# Discussion and Concluding Remarks

### Main Contributions

- Integration of coding and block Markov chain techniques to study timely communication for delay-sensitive traffic
- We model channel unreliability by the erasure channel
- Model source correlation by Markov process
- True and incremental updates are special cases