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Remote real-time tracking
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Fast or Precise?

I What is the optimal strategy for real-time tracking of a
discrete time process under periodic sampling?

I Slow and precise or Fast but loose

t

Xt

t

Xt
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Application

I Many cyber-physical systems often employ tracking of sensor
data in real time

I Examples: sensing, surveillance, real-time control, ...

I Communication is limited by the following constraints:
I Cost of frequent sampling
I Limited channel resources
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Existing Works

Sequential coding for correlated sources

I Rate-distortion region characterization [Viswanathan2000TIT]

I Real-time encoding for Gauss-Markov source [Khina2017ITW]

Remote estimation under communication constraints
I Real-time estimation of Wiener process [Sun2017ISIT]

I Real-time estimation of AR source [Chakravorty2017TAC]

Sequential lossy coding for sequences under delay constraints

I Zero delay lossy coding [Linder2001TIT]

I Limited delay lossy coding [Weissman2002TIT]

Current setting

I Rate-limited channel with unit delay per channel use

I Real-time estimation of AR(1) process
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Source Process

+

αz−1

Sample
at

t = ks

ξt
Xt

I Innovation process ξt ∈ Rn is i.i.d. and n-dimensional

I Discrete AR(1) n-dimensional source process

Xt = αXt−1 + ξt for all t ≥ 0

I Source process Xt is sub-sampled at 1/s, to obtain samples
Xks at t = ks
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Communication Setting

Encoder
(φt)

Channel
(nR bps)

Decoder
(ψt)

Encoder has
access to

decoder state

Decoder has
received C t−1

Xks X̂t|t = ψt(C
t−1)

I Encoder: φt : X k+1 → {0, 1}nRs at t = ks

I Channel: Error free, limited capacity causes delayed
transmission

I Decoder: ψt : {0, 1}nRt → X at t = ks

I Performance metric:

Dt(φ, ψ,X ) ,
1

n
E‖Xt − X̂t|t‖22.
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Optimal Decoder Structure

Optimal
Decoder

Channel output X̂t|t = αiE[Xks|C t−1 ]

I Decoder at time t = ks + i for i ∈ {1, . . . , s}
I For the mean squared error, estimate conditional mean

I Utilize the latest information to refine the last sample Xks
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Encoder Structure

− Quantizer

Decoder state

Xks

Yt

X̂ks|t

Q(Yt)

I Find the error in the decoder estimate of the last sample

I Transmit the quantized error
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Periodic Successive Update Scheme

I Divide the sampling interval of duration s in smaller intervals
of duration p

I For any time t = ks + jp, for 0 ≤ j < s/p, encode

Yk,j = Xks − X̂ks|ks+jp

t

Xt s = 4, p = 2

Q(Y0,0) Q(Y0,1) Q(Y4,0) Q(Y4,1) Q(Y8,0) Q(Y8,1)

0 4 8
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Encoder at time t = ks + jp

‖Yk,j‖22 > nM
or E?

Transmit
Q(Yk,j)

Transmit
⊥

Yk,j

yes

no

To channel

E is the codebook failure event
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(θ, ε)-quantizer

Definition
Fix 0 < M <∞. A quantizer Q : Rn → {0, 1}nR constitutes an
nR bit (θ, ε)-quantizer if for every vector y ∈ Rn such that
1
n‖y‖

2
2 ≤ M2, we have

1

n
E‖y − Q(y)‖22 ≤

1

n
‖y‖22θ(R) + ε2.

for 0 ≤ θ ≤ 1 and 0 ≤ ε.
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Decoder at time t = ks + jp + i

received ⊥?

Declare X̂s|s = 0
for all s ≥ t

X̂t|t = αt−ks X̂ks|jp

X̂ks|jp = X̂ks|ks+(j−1)p

+ Q(Yk,j−1)

Codeword Q(Yk,j−1)

yes

no
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Performance of Periodic Successive Update Scheme

Lemma
For a fixed time horizon T , periodic successive update scheme with
a (θ, ε) quantizer gives

1

T

T∑
t=0

Dt(φp, ψp,X ) ≤ σ2
[

1− g(s)α2p

1− α2p θ(Rp)

(
1− ε2

σ2
− θ(Rp)

)]

for a very low probability of encoder failure and g(s) , 1−α2s

s(1−α2)
.
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Average Distortion Upper Bound for Gain-Shape Quantizer
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Figure: (a) gives a case where p =s is the best and in (b) p =1 minimizes
the bound
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Special Case: Successive Update scheme

I Fast and Loose

I Set p = 1

t

Xt s = 4, p = 1

Q(Y0,0) Q(Y0,1) Q(Y0,2) Q(Y0,3)

0 4 8
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Performance of the scheme

Lemma
Let t = ks + i , for i ∈ [1, s], for n sufficiently large, the successive
update scheme used with a (θ, ε) quantizer realisation with
θ(R) = 2−2R satisfies

Dt(φ, ψ,X ) ≤ α2i2−2RiDks(φ, ψ,X ) + σ2(1− α2i ) + fn

where fn → 0 for large n.
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Optimum min-max tracking accuracy

Definition
We define the accuracy

δT (φ, ψ,Xn) , 1−
1
T

∑T−1
t=0 Dt(φ, ψ,X )

σ2

The optimum asymptotic maxmin tracking accuracy is defined

δ∗(R, s,X) , lim
T→∞

lim
n→∞

[
sup
(φ,ψ)

inf
X∈Xn

δT (φ, ψ,Xn)
]
.
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Main Result: Lower Bound

Theorem (Lower bound for maxmin tracking accuracy: The
achievability)

For R > 0 and s ∈ N, the asymptotic minmax tracking accuracy is
bounded below as

δ∗(R, s,X) ≥ δ0(R)g(s).

for δ0(R) , α2(1−2−2R)
(1−α22−2R)

and g(s) , (1−α2s)
s(1−α2)

for all s > 0.

This bound is achieved using succesive update scheme for p = 1
and a specific (θ, ε) quantizer.
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Main Result: Upper Bound

Theorem (Upper bound for maxmin tracking accuracy: The
converse)

For R > 0 and s ∈ N, the asymptotic minmax tracking accuracy is
bounded above as

δ∗(R, s,X) ≤ δ0(R)g(s).

The upper bound is obtained by considering the Gauss-Markov
Processes.
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Conclusion

I We provide an information theoretic upper bound for maxmin
tracking accuracy for a fixed rate and sampling frequency.

I It is shown that for a fixed rate, high dimensional setting, the
strategy of being fast but loose achieves this bound.

I We outline the performance requirements of the quantizer
needed for achieving the optimal performance.

I For non-asymptotic regime our studies show that the optimal
strategy might differ.
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