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Remote real-time tracking
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Fast or Precise?

» What is the optimal strategy for real-time tracking of a
discrete time process under periodic sampling?

» Slow and precise or Fast but loose
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Application

» Many cyber-physical systems often employ tracking of sensor
data in real time

> Examples: sensing, surveillance, real-time control, ...

» Communication is limited by the following constraints:

» Cost of frequent sampling
» Limited channel resources



Existing Works

Sequential coding for correlated sources

> Rate-distortion region characterization [Viswanathan2000TIT]
» Real-time encoding for Gauss-Markov source [Khina20171TW]

Remote estimation under communication constraints

> Real-time estimation of Wiener process [Sun2017ISIT]
> Real-time estimation of AR source [Chakravorty2017TAC]

Sequential lossy coding for sequences under delay constraints
» Zero delay lossy coding [Linder2001TIT]
> Limited delay lossy coding [Weissman2002TIT]

Current setting

» Rate-limited channel with unit delay per channel use

> Real-time estimation of AR(1) process



Source Process
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» Innovation process &; € R" is i.i.d. and n-dimensional

» Discrete AR(1) n-dimensional source process
Xe =aXi—1+& forallt >0

» Source process X; is sub-sampled at 1/s, to obtain samples
Xis at t = ks



Communication Setting
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» Encoder: ¢, : X1 — {0,1}"Fs at t = ks

» Channel: Error free, limited capacity causes delayed

transmission

» Decoder: 1, : {0,1}"R* — X at t = ks

» Performance metric:

1 ~
Dt(éawa X) = EEHXt - Xt\t”%



Optimal Decoder Structure

Optimal

Channel output ———— >
P Decoder

—> )%t|t = OziE[st‘thl]

» Decoder at time t = ks + i for i € {1,...,s}
» For the mean squared error, estimate conditional mean

> Utilize the latest information to refine the last sample Xjs



Encoder Structure

Quantizer H— Q(Y})

Decoder state

» Find the error in the decoder estimate of the last sample

» Transmit the quantized error



Periodic Successive Update Scheme

» Divide the sampling interval of duration s in smaller intervals
of duration p

» For any time t = ks + jp, for 0 < j < s/p, encode

Yij = Xks — Xis|ks+jp
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Encoder at time t = ks + jp

Transmit

Q(Yk,)

Transmit

£ is the codebook failure event

—> To channel



(0, £)-quantizer

Definition
Fix 0 < M < co. A quantizer Q : R” — {0,1}"R constitutes an

nR bit (0, €)-quantizer if for every vector y € R" such that
Lly[I2 < M2, we have

1 1
“Elly — QI3 < L IvI30(R) + 2.

for0<f<1land0<e.



Decoder at time t = ks + jp + i

Codeword Q( Yk j—1)

Declare )A(5|S =0
forall s >t

v _ _t—ks vy
tht =« st\jp

)%ks\jp = )?ks‘k5+(j*1)p
+ Q(Ykj-1)
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Performance of Periodic Successive Update Scheme

Lemma

For a fixed time horizon T, periodic successive update scheme with
a (0,¢€) quantizer gives

u s) 2P g2
;) ot X) <0 1= B0 (1= 5 ot

for a very low probability of encoder failure and g(s) = 1o



Average Distortion Upper Bound for Gain-Shape Quantizer
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Figure: (a) gives a case where p =s is the best and in (b) p =1 minimizes
the bound



Special Case: Successive Update scheme

» Fast and Loose
> Setp=1

Xe s=4,p=1

Q(Yo,0)  Q(Y0,1) Q(Yo,2)  Q(Yo,3)



Performance of the scheme

Lemma

Let t = ks + i, for i € [1,s], for n sufficiently large, the successive
update scheme used with a (0, €) quantizer realisation with

O(R) = 272R satisfies

De(6,9,X) < a? 272K Dy (6,4, X) + 0*(1 — *) + £,

where f, — O for large n.



Optimum min-max tracking accuracy

Definition
We define the accuracy

A 1 T:_l Dt(d)’wax)
5T(¢:¢axn):1_ T =0 2

o

The optimum asymptotic maxmin tracking accuracy is defined

% A . . T
0*(R,s,X) = lim  lim_ [(w))gggné (¢>,1/},Xn)]'



Main Result: Lower Bound

Theorem (Lower bound for maxmin tracking accuracy: The
achievability)

For R > 0 and s € N, the asymptotic minmax tracking accuracy is
bounded below as

5*(R757X) > 5O(R)g(s)‘

for 6o(R) = % and g(s) = gz{f‘;;)) for all s > 0.

This bound is achieved using succesive update scheme for p =1
and a specific (6, €) quantizer.



Main Result: Upper Bound

Theorem (Upper bound for maxmin tracking accuracy: The
converse)

For R > 0 and s € N, the asymptotic minmax tracking accuracy is
bounded above as

5*(R’S7X) < 5O(R)g(s)‘

The upper bound is obtained by considering the Gauss-Markov
Processes.



Conclusion

» We provide an information theoretic upper bound for maxmin
tracking accuracy for a fixed rate and sampling frequency.

» It is shown that for a fixed rate, high dimensional setting, the
strategy of being fast but loose achieves this bound.

> We outline the performance requirements of the quantizer
needed for achieving the optimal performance.

» For non-asymptotic regime our studies show that the optimal
strategy might differ.
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