Markov chains: theory and applications

Parimal Parag

Nov 22, 2021

Introduction

Probability space

Probability space (Ω, \mathcal{F}, P)

- Sample space is an abstract set Ω
- Collection of subsets of sample space *F* that contain Ω, are closed under countable unions and complements
- ▶ Probability function $P : \mathcal{F} \rightarrow [0, 1]$

Probability space (Ω, \mathcal{F}, P)

• Let
$$\Omega = \{H, T\}^{\mathbb{N}}$$

- $\mathcal{F} = \sigma(E_1, \ldots, E_n, \ldots)$ where $E_n \triangleq \{\omega \in \Omega : \omega_n = H\}$
- ▶ Probability defined as $P(\bigcap_{i \in S} E_i \cap_{i \in T} E_i^c) \triangleq p^{|S|}(1-p)^{|T|}$ for all finite disjoint subsets $S, T \subseteq \mathbb{N}$

Discrete stochastic processes

Discrete stochastic processes X

- Discrete time index set \mathbb{N}
- Countable state space \mathcal{X}
- A mapping $X : \Omega \to \mathcal{X}^{\mathbb{N}}$ such that $\bigcap_{k=1}^{n} \{X_k = x_k\} \in \mathcal{F}$ for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathcal{X}$
- ▶ In particular, (X_1, \ldots, X_n) is a random vector for all $n \in \mathbb{N}$

Independent and identically distributed processes $Z:\Omega \to \{0,1\}^{\mathbb{N}}$

- For (Ω, \mathcal{F}, P) of the previous example, let $Z_n = \mathbb{1}_{\{\omega_n = H\}}$
- ▶ For any $z_1, \ldots, z_n \in \{0, 1\}$, let $S \triangleq \{i \in [n] : z_i = 1\}$
- The probability of joint event

$$P(\cap_{k=1}^{n} \{Z_k = z_k\}) = \prod_{k=1}^{n} P(\{Z_k = z_k\}) = p^{|S|}(1-p)^{n-|S|}$$

Markov property

History of the process X until time n

• Collection of events of the form $H_n = \bigcap_{k=1}^n \{X_k = x_k\}$

Discrete time Markov chain X

Conditioned on the present, future is independent of the past

$$P(\{X_{n+1} = y\} \mid \{X_n = x\} \cap H_{n-1}) = P(\{X_{n+1} = y\} \mid \{X_n = x\})$$

Random walk S

- Let $Z: \Omega \to \{0,1\}^{\mathbb{N}}$ be an independent step size sequence
- The random walk $S: \Omega \to \mathbb{N}^{\mathbb{N}}$ defined as $S_n \triangleq \sum_{k=1}^n Z_k$ is Markov

$$P(\{S_{n+1} = y\} \mid \{S_n = x\} \cap H_{n-1}) = P(\{S_{n+1} = y\} \mid \{S_n = x\})$$
$$= P\{Z_{n+1} = y - x\}$$

Transition matrix and homogeneity

Transition matrix $P(n+1): \mathfrak{X} imes \mathfrak{X} o [0,1]$

- (x, y)th element is $P_{xy}(n+1) \triangleq P(\{X_{n+1} = y\} \mid \{X_n = x\})$
- ➤ xth row is (P_{xy}(n + 1) : y ∈ X) the conditional probability distribution of X_{n+1} given the event {X_n = x}

Homogeneity

When the transition matrix P(n) = P for all times n

Random walk S

When the underlying step-size sequencer is $\it i.i.d.$, then the random walk S is homogeneous

$$P_{xy}(n+1) = P\{Z_{n+1} = y - x\} = P\{Z_1 = y - x\} = P_{xy}(1)$$

Representation

Transition matrix P as weighted transition graph (\mathcal{X}, E, w)

- \blacktriangleright Set of nodes is the state space $\mathcal X$
- ▶ Set of directed edges $E = \{(x, y) \in \mathfrak{X} \times \mathfrak{X} : p_{xy} > 0\}$
- Weight of edge $(x, y) \in E$ is $w_{xy} = P_{xy}$

Random walk on non-negative integers

Random representation

For each Markov chain $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$, there exists a function f and independent sequence $Z : \Omega \to \mathcal{X}^{\mathbb{N}}$, such that $X_{n+1} = f(X_n, Z_{n+1})$

Chapman Kolmogorov Equations

n-step transition probability matrix $P^{(n)}$

- (x, y)th element is $P_{xy}^{(n)} \triangleq P(\{X_{m+n} = y\} \mid \{X_m = x\})$
- One can show that $P^{(n+m)} = P^{(n)}P^{(m)}$ to conclude that $P^{(n)} = P^n$
- If $\nu(n)$ denotes the distribution of X_n , then

$$\nu(n) = \nu(0)P^n$$

Three questions

- What is the limiting distribution $\lim_{n\to\infty} \nu(n)$?
- What is the average time spent in a state x?
- What is the mean return time to state x?

Stopping Time

Stopping time $\tau: \Omega \to \mathbb{N}$

Value of stopping time being equal to n completely determined by process until time n

$$\{\tau = n\} \in \sigma(X_1,\ldots,X_n)$$

- $\blacktriangleright \tau$ is finite almost surely
- First hitting time to a state x

$$\tau_{\mathsf{x}} \triangleq \inf\{n \in \mathbb{N} : X_n = \mathsf{x}\}$$

• τ_x is a stopping time if finite almost surely

Strong Markov Property

Strong Markov Property

Markov property holds at stopping times

$$P(\{X_{\tau+1} = y\} \mid \{X_{\tau} = x\}) = P_{xy}$$

Regeneration for Markov chain X

- If τ_x is finite almost surely
- $(X_{\tau_x}, X_{\tau_x+1}, \dots,)$ distributed identically to X for $X_0 = x$
- X_{τ_x+n} independent of $(X_0, \ldots, X_{\tau_x-1})$

Invariant distribution

Periodic Markov chain

Periodicity

For a state x, we can define the set of time steps for possible return

$$A(x) \triangleq \{n \in \mathbb{N} : P_{xx}^{(n)} > 0\}$$

- Periodicity of state x: d(x) = gcdA(x)
- Aperiodic when d(x) = 1
- Two state Markov chain with $X_0 = 0$

ν(n) = [1 0] when n even and ν(n) = [0 1] when n odd
 No limit for ν(n)

Reducible Markov chain

Irreducibility

- A state y is reachable from state x if $P_{xy}^{(n)} > 0$ for some n
- If all states are reachable from one another, then P is irreducible

Reducible Markov chain

ν(*n*) different when X₀ ∈ {0,1} and when X₀ ∈ {2,3}
No limit for *ν*(*n*)

Transience and Recurrence

State x for a Markov chain X

- Transient if X₀ = x and there is a finite probability of no return to state x
- Recurrent if X₀ = x and the recurrence time τ_x is finite almost surely
 - ▶ Positive recurrent if mean recurrence time E[τ_x | {X₀ = x}] is finite
 - null recurrent otherwise

Transient Markov chain

- $P\{S_n = k\} = \binom{n}{k}p^k(1-p)^{n-k}$
- ► S_n/n converges to $\mathbb{E}Z_1$

Limiting distribution

Ergodic Markov chain

Irreducible, aperiodic, and positive recurrent

Number of visits to a state x in n time steps

Average number of visits to a state x

Invariant distribution

Ergodic Markov chain X with transition matrix P

- Unique probability vector π such that $\pi = \pi P$
- Left eigenvector with maximum eigenvalue 1

• If
$$\nu(0) = \pi$$
, then $\nu(n) = \pi P^n = \pi$ for all n

• If
$$\nu(0) = \pi$$
, then $\frac{1}{n} \sum_{k=1}^{n} \nu(k) = \pi$

For a positive recurrent Markov chain

$$\pi_x = \frac{1}{\mathbb{E}[\tau_x \mid \{X_0 = x\}]}$$

Showing that (𝔼_x 𝔊_y(τ_x) : y ∈ 𝔅) is a positive eigenvector for P with eigenvalue 1

Ergodic Markov chain X

$$\pi_{x} = \frac{1}{\mathbb{E}_{x}[\tau_{x}]} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{x}[N_{x}(n)] = \lim_{n \to \infty} \nu_{x}(n)$$

Computing invariant distribution

Cut method

- Global balance equation $\pi = \pi P$
- Let $A \subseteq \mathfrak{X}$, then $(A, \mathfrak{X} \setminus A)$ is a partition of state space

Probability flux balances across cuts

$$\sum_{y \notin A} \sum_{x \in A} \pi_x P_{xy} = \sum_{x \in A} \sum_{y \notin A} \pi_y P_{yx}$$

Transform method

- ▶ When the state space X = Z₊ and P_{xy} is tridiagonal and homogeneous
- Discrete transform $\Pi(z) \triangleq \sum_{x \in \mathbb{Z}_+} \pi_x z^x$

$$\sum_{x \in \mathbb{Z}_+} \sum_{y \in \mathbb{Z}_+} \pi_y P_{yx} z^x = \sum_{x \in \mathbb{Z}_+} \pi_{x-1} P_{x-1,x} z^x + \sum_{x \in \mathbb{Z}_+} \pi_x P_{x,x} z^x + \sum_{x \in \mathbb{Z}_+} \pi_{x+1} P_{x+1,x} z^x$$

Application

Page Rank

Internet as a network of webpages

- \blacktriangleright Let the set of webpages be denoted by ${\mathcal X}$
- If there exists a hyperlink from page x to page y, then (x, y) ∈ E

Ordering webpages

- Rank of page x denoted by r_x
- ► $r_x \propto d_{in}(x) = \sum_{y \in \mathcal{X}} \mathbb{1}_{\{(y,x) \in E\}}$ number of webpages referring to it
- Agnostic to referral by important webpages

Importance of webpages

Importance shared by a page to all its referred pages

$$r_x = \sum_{(y,x)\in E} \frac{r_y}{d_{\mathrm{out}}(y)}$$

- ► Ranking vector (r_x : x ∈ X) is an invariant vector for transition probability matrix H where H_{yx} = 1/(d_{out}(y) 1{(y,x)∈E})
- Ranking is proportional to invariant distribution of a Markov chain with transition matrix H

Computing invariant distribution

Markov random walk under transition matrix H with initial distribution v(0)

$$\blacktriangleright \nu(n) = \nu(n-1)H = \nu(0)H^n$$

• Stop if
$$\|\nu(n) - \nu(n-1)\| < \epsilon$$

Regularizing webpage graphs

Networked pages

- ► Transition matrix *H* may not be irreducible
- Teleportation probability (1α)
- Personalized preference probability distribution v for webpages
- Modified transition probability

$$G_{xy} = \alpha H_{xy} + (1 - \alpha) v_y$$

• Modified transition matrix $G = \alpha H + (1 - \alpha) \mathbf{1} \mathbf{v}^T$