
Lecture-01: Parallel Server Systems

Parimal Parag

1 Introduction

In this lecture, we focus on latency performance for an important class of datacenter applications, called
Online Data Intensive (OLDI) applications, which includes web search, online retail, and advertisement. In
these applications, a query from the root node is sent redundantly to multiple leaf nodes in the data center.
Response from leaf nodes is aggregated, and sent to root node.

Figure 1: OLDI architecture.

2 Simplified model

Ignoring the aggregation switches, this system can be modeled by parallel systems. We assume that a query
is sent to K parallel servers storing unique messages m1, . . . ,mK. A query is completed, when it receives
response from all K servers.

We denote the response time for query to nth server by Tn. We will focus on parallel server systems with
homogeneous servers. Specifically, we will assume that query response times at all servers are random,
independent, and identically distributed (i.i.d. ) with exponential distribution

P{Tn ⩽ x} = 1 − e−µx, for all x ⩾ 0.

Lemma 2.1. An exponentially distributed random variable T has the memoryless property. That is, for all x,y > 0,

P({T > y + x}
∣∣ {T > x}) = P{T > y} .

Proof. From the definition of conditional probability, we can write for any x,y ⩾ 0,

P({T > y + x}
∣∣ {T > x}) = P({T > y + x} ∩ {T > x})

P{T > x} =
P{T > y + x}

P{T > x} .

The result follows from the definition of exponential distribution.

3 Erasures, codes, and stragglers

Recall that a query is sent to K parallel servers storing unique messages m1, . . . ,mK. A query is completed,
when it receives response from all K servers. For a single query, the response time for server n ∈ [K] is
denoted by an i.i.d. random variable Tn distributed exponentially with rate µ.
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3.1 Erasures

Recall that for a communication channel, if one send an n length codeword (x1, . . . , xn) ∈Xn over an erasure
channel, then the output (y1, . . . ,yn) ∈ (X∪ {e})n is where the set of erasures is

E ≜ {i ∈ [n] : yi ̸= xi} .

3.2 Codes

One way to deal with erasures is to employ forward error correcting codes c : MK →XN that map messages
m ∈MK to codes x = c(m) ∈ XN . The code-rate of a code is defined as R ≜ K

N .

3.2.1 Information Sets

For any code c, we can define a collection of information sets IK(c) such that any element I ∈ IK(c) is a
K-length subset of [N] and one can decode m from observing the unerased outputs (yi : i ∈ I).

Example 3.1 (Replication code). A replication code of rate 1/R merely repeats each input message mi
R times to get the codeword (m1, . . . ,m1, . . . ,mK, . . . ,mK). The collection of information sets is given by

Irep
K = {I ⊆ [N] : |I| = K,mi are distinct for all i ∈ I} .

Example 3.2 (MDS code). For MDS code, any K subset of output codeword y is sufficient to recover
the original message, and hence

Imds
K = {I ⊆ [N] : |I| = K} .

3.3 Stragglers

For the parallel query response system, at any time t, we denote the set of stragglers by

E(t)≜
{

j ∈ [K] : Tj > t
}

.

We observe that as the time progresses, more and more servers will finish responding to the query. Further,
when Tj are continuous random variables, only one server can finish at any instant of time. As such, E(t) is
random process that is piecewise constant and decreasing by one element for all sample paths. Let T(0) ≜ 0,
and we can inductively define the time of kth decrease as

T(k) ≜ inf
{

t > T(k−1) : |E(t)| =
∣∣∣E(T(k−1))

∣∣∣− 1
}
= inf{t > 0 : |E(t)| = K − k} .

That is, we observe that we have (k − 1) responses in the time interval [T(k−1), T(k)), and hence the number
of stragglers is |E(t)| = K − k + 1 at time t in this interval. Further, E(T(0)) = [K] and E(T(K)) = ∅, and
hence there are no stragglers after time T(K).

Considering m ≜ (m1, . . . ,mK) as a codeword, we can see that stragglers are erasures. In this case, the
number of erasures is a function decreasing in time. Even though, the number of erasures eventually
become zero, one has to wait until time T(K) for that to happen. Thus, the query response time is T(K).

Similar to communication channels, we can employ forward error correcting codes to information m ∈
MK, and obtain coded information x ∈ XN . We store each coded information symbol xn at a unique server
n ∈ [N].

4 Download time

We can compute the mean download time for an uncoded parallel server system, and the coded parallel
server system under symmetric coding.
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4.1 Useful servers

Let Ik−1 ⊆ [N] denotes the set of coded symbols downloaded after (k − 1) downloads. Then Ik−1 ⊆ I for
some I ∈ IK(c). We define the set of useful servers after (k − 1) downloads as

U(Ik−1)≜ ∪I∈IK (I \ Ik−1).

Computing mean download time is not easy for all coded systems. However, it can be greatly simplified
for symmetric coded systems. A code is called symmetric if the number of useful servers Nk−1 ≜ |U(Ik−1)|
depends only on the number of downloads and not their set.

Example 4.1 (Replication code). For an (N,K) replication code, where N = RK, once a fragment is
downloaded the servers storing remaining (R − 1) replicas are useless. Therefore, Nk−1 = (K − k +
1)R = (K − k + 1)N

K .

Example 4.2 (MDS code). For an (N,K) MDS code, all remaining N − k + 1 servers are useful after
k − 1 ⩽ K − 1 downloads, and hence Nk−1 = N − k + 1.

Remark 1. An uncoded system can be considered as an (K,K) replication coded system. Recall that in
uncoded system, all K − k + 1 servers are storing useful information in the time interval [T(k−1), T(k)) after
k − 1 downloads.

4.2 Parallel useful servers

Lemma 4.3. For an (N,K) symmetrically coded parallel server system, the random sequence (T(k)− T(k−1) : k ∈ [K])
are independent and distributed exponentially with rates Nk−1µ for all k ∈ [K].

Proof. At any time t ∈ [T(k−1), T(k)), the set of remaining useful servers are U(Ik−1). The query response
time for these servers are (Tj : j ∈ U(Ik−1)), which are i.i.d. memoryless with rate µ. From the memoryless
property of the response times, it follows that Tj − T(k−1) is independent of T(k−1) for all j ∈ U(Ik−1) and
distributed exponentially with rate µ. Further, (Tj − T(k−1) : j ∈ U(Ik−1))are independent from indepen-
dence of (Tj : j ∈ [N]). From the definition of minimum and independence of (Ti − T(k−1) : i ∈ U(Ik−1)), we
have

P
{

T(k) − T(k−1) > x
}
= P(∩U(Ik−1)

j=1

{
Tj − T(k−1) > x

}
) =

Nk−1

∏
j=1

P
{

Tj − T(k−1) > x
}
= e−Nk−1µx.

Theorem 4.4. The mean download time for an (N,K) symmetric coded system is ∑K
k=1

1
Nk−1µ .

Proof. The download time for coded system is given by T(K), and its mean is

ET(K) =
K

∑
k=1

E[T(k) − T(k−1)] =
K

∑
k=1

1
Nk−1µ

.

Remark 2. Among all (N,K) symmetric codes, the MDS codes has the largest number of useful servers after
k − 1 downloads for k ∈ [K], and hence it achieves the minimum mean download time given by

K

∑
k=1

1
(N − k + 1)µ

=
HN − HN−K

µ
≈ 1

µ
ln

N + 1
N − K + 1

= − 1
µ

ln(1 − K
N + 1

) ≈ K
Nµ

.

For the replication codes, we have Nk−1 = (K − k + 1)N
K and hence the mean download time is given by

K

∑
k=1

K
N(K − k + 1)µ

=
KHK
Nµ

≈ K
Nµ

ln(K + 1).
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