
MODELING AND OPTIMIZATION OF
LATENCY IN ERASURE-CODED
STORAGE SYSTEMS

Vaneet Aggarwal, Tian Lan, Parimal Parag

2

OUR TEAM

Vaneet Aggarwal

Purdue

Tian Lan

GWU

Parimal Parag

IISc

PART 1: INTRODUCTION

4

• Demand for storage services increasing rapidly (Backup, photos, videos)

• Companies increasing storage space rapidly (Baidu 2TB, Qihoo 360 36TB)

CLOUD STORAGE

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fmedium.com%2F%40spirosx%2Fthe-
beginners-guide-to-the-cloud-
d5d6c48a4f46&psig=AOvVaw3CIuhUwfhHpJOPX5Fh66F8&ust=1634791868711000&source=images&cd=vfe
&ved=2ahUKEwj4w5m2mNjzAhWIbqwKHSlvBAgQr4kDegQIARAx

Source: https://www.makeuseof.com/cloud-trends-in-2021-and-beyond/

5

• Growth in personal cloud storage and
sharing of photos/videos/documents

• The global cloud storage market size is
projected to grow from USD 50.1
billion in 2020 to USD 137.3 billion by
2025, at a Compound
Annual Growth Rate (CAGR) of 22.3%
during the forecast period
(MarketsandMarkets.com).

GROWTH IN CLOUD STORAGE

Source: https://time.com/wp-content/uploads/2015/05/cloud_index_white_paper.pdf

Source: https://www.forbes.com/sites/gilpress/2015/10/28/cisco-says-cloud-traffic-to-
quadruple-by-2019-driven-by-consumers-mobility-and-iot/

Rate Requirements

6

EVOLVING DIGITAL LANDSCAPE

7

• Modeling, characterization, and optimization of latency for distributed
storage systems

KEY PROBLEM IN THIS TUTORIAL

8

• Latency: Need content within certain
seconds

• Reliability: Data should not be lost

• Cost: Less cost to store

• Security: Data should not go in wrong
hands

Efficient distributed storage that works on
the cloud with limited bandwidth links

USER REQUIREMENTS

9

• Latency: Need content within certain
seconds

• Reliability: Data should not be lost

• Cost: Less cost to store

• Security: Data should not go in wrong
hands

Efficient distributed storage that works on
the cloud with limited bandwidth links

Conflicting Requirements

Need redundancy

USER REQUIREMENTS

10

• Triple Replication – 2x storage overhead

• Erasure codes: same reliability with less overhead as compared to
replication

• All companies moving towards erasure coded storage systems

• Cleversafe: 60% more capacity, 100 million X reliable, 80-90% less cost

REDUNDANCY WITH ERASURE CODES

11

WHAT IS AN ERASURE CODE?

• Erasure Code (EC) involves encoding the message in a redundant manner

• EC transforms message of k symbols to n symbols

12

• Erasure Code (EC) involves encoding the message in a redundant manner

• EC transforms message of k symbols to n symbols

• There exists a set of k un-erased symbols for recovery

• For MDS codes, any k un-erased symbols suffice (e.g., Reed-Solomon codes)

WHAT IS AN ERASURE CODE?

13

• Request for files, each file has multiple chunks

• Given placement, latency=?

FILE REQUEST IN CLOUD STORAGE SYSTEMS

14

• Key Questions:
– What is the choice of scheduling strategy?
– How to characterize different measures of latency?
– How much redundancy to add?
– What is the optimal placement for coded chunks?
– How to exploit the tradeoff between latency and cost?

FILE REQUEST IN CLOUD STORAGE SYSTEMS

15

• File Request is Poisson (Each file request means get any k of n chunks)

• There are multiple servers (say m)

• Each server has a service rate given by some distribution

ASSUMPTIONS

16

• File Request is Poisson (Each file request means get any k of n chunks)

• There are multiple servers (say m)

• Each server has a service rate given by some distribution

• Single file, k=n=1, this is M/G/1 queue model

• In general, open problem

• Queuing theory techniques don’t account for simultaneous arrivals at
different servers

ASSUMPTIONS

17

OPTIMAL SCHEDULING IS HARD

Erasure-coded storage. Scheduling problem.

18

• Very large state space due to synchronous arrival to multiple servers, and
need to keep track of their partial service

• Latency characterizations are difficult, since the underlying processes are
multi-dimensional

• Even when the process evolutions are Markov, equilibrium distributions
are unknown as it is equivalent to finding eigenfunctions of multi-
dimensional operators

• Finding the latency optimal scheduling policy is still open

OPTIMAL SCHEDULING IS HARD

19

• Reservation scheduling
– Huang, Pawar, Zhang, Ramchandran (2012), Lee, Shah, Huang, Ramchandran

(2017)

• Fork-join scheduling
– Joshi, Liu, Soljanin (2014), Joshi, Soljanin, Wornell (2017), Kumar, Tandon, Clancy

(2017), Badita, Parag, Chamberland (2019)

• Probabilistic scheduling
– Xiang, Lan, Aggarwal, Chen (2014, 2016), Aggarwal, Fan, Lan (2017), Alabbasi,

Aggarwal, Lan (2019), Wang, Harchol-Balter, Jiang, Scheller-Wolf, Srikant (2019)

• Delayed-relaunch scheduling
– Badita, Parag, Aggarwal (2020, 2021)

KEY SCHEDULING STRATEGIES

20

• Reservation scheduling
– Huang, Pawar, Zhang, Ramchandran (2012), Lee, Shah, Huang, Ramchandran (2017)

RESERVATION SCHEDULING

21

FORK-JOIN SCHEDULING

22

• Probabilistic scheduling chooses different k-subsets with some probability
– Xiang, Lan, Aggarwal, Chen (2014, 2016), Aggarwal, Fan, Lan

(2017), Alabbasi, Aggarwal, Lan (2019), Wang, Harchol-Balter, Jiang, Scheller-
Wolf, Srikant (2019)

PROBABILISTIC SCHEDULING

23

• Delayed-Relaunch scheduling: Job at some servers are started with a delay
based on completion of some tasks.
– Badita, Parag, Aggarwal (2020, 2021)

DELAYED-RELAUNCH SCHEDULING

24

COMPARISON OF STATE-OF-ART: ASSUMPTIONS

25

COMPARISON OF STATE-OF-ART: ANALYSIS RESULTS

26

NUMERICAL COMPARISON OF KEY SCHEDULING STRATEGIES

• MDS-Reservation and Fork-Join strategies do not achieve the optimal
stability region

• Probabilistic scheduling outperforms Fork-Join scheduling for all arrival
rates in this simulation

• Shifted
Exponential
Service Times, 12
servers

• Homogenous files
with (12,7) code

• Hyperparameter
search for
probabilistic
scheduling by
choosing best of
100 random
selections.

27

• Introduction

• Fork-join scheduling

• Probabilistic scheduling

• Delayed-Relaunch scheduling

• Evaluations and other applications

OUTLINE

28

• AT&T Research: Yih-Farn Robin Chen (now retired), Moo-Ryong Ra (now at Amazon), Vinay Vaishampayan
(now at City University of NY), Chao Tian (now at Texas A&M University)

• Purdue University: Abubakr Al-Abbasi (now at Qualcomm), Jingxian Fan (now at Google), and Ciyuan Zhang

• George Washington University: Yu Xiang (now at AT&T)

• IISc Bangalore: Ajay Badita (now at IOTA), Rooji Jinan, Saraswathy Ramanathan, Vikram Srinivasan

• IIT Madras: Pradeep Sarvepalli

• Rutgers University: Rawad Bitar (now at TUM), Salim El Rouayheb

• Texas A&M University: Jean-Francois Chamberland

• University of Illinois, Chicago: Balajee Vamanan

• Funding:

– NSF CNS 1618628

– ONR N00014-20-1-2146

– CISCO Systems, Inc.

– AT&T Research

– Department of Science and Technology, SERB ECR DSTO1677

– Department of Telecomm, Govt of India, DoTC 0001

– Robert Bosch Centre for Cyber Physical Systems

– Centre for Networked Intelligence (a CISCO CSR initiative)

ACKNOWLEDGEMENTS

29• Promotion Code: 994513

STORAGE BOOK

PART 2: FORK-JOIN SCHEDULING

Tian Lan, ECE@GWU

2

RECAP

Scheduling problem in erasure-coded storage.

3

• File storage

– Each file divided into 𝑘 chunks

– Chunks encoded and stored on 𝑛 servers

• Arrival of requests

– Each request wants entire file

– Poisson arrival requests with rate 𝜆

• Time in the system

– Until the recipient of entire file

• Service at each server

– i.i.d. exponential service time with rate 𝜇

SYSTEM MODEL

4

FORK-JOIN SYSTEM

1234

1

1

2

𝜇

234
𝜇

34
𝜇

𝜆

𝜆

𝜆

𝜆
F J

Abandon

• (n,k) fork-join queue:

– Joshi, Liu, Soljanin (2014), Joshi, Soljanin, Wornell (2017),

Kumar, Tandon, Clancy (2017), Badita, Parag, Chamberland (2019).

5

STABILITY OF FORK-JOIN SYSTEM

• Proof outline:

– When 𝑘 out of the 𝑛 tasks finish service, the remaining 𝑛 − 𝑘 tasks abandon

their queues

– A task can be one of the abandoning tasks with probability (𝑛 − 𝑘)/𝑛.

– The effective arrival rate to each queue is 𝜆 minus abandonment 𝜆(𝑛 − 𝑘)/𝑛.

– 𝜆 − 𝜆 𝑛 − 𝑘 /𝑛 < 𝜇 gives the condition.

For the 𝑛, 𝑘 fork-join system to be stable, the Poisson arrival rate 𝜆
and the service rate 𝜇 per server must satisfy 𝜆 < 𝑛𝜇/𝑘.

6

PRIOR WORK AND KEY CONTRIBUTIONS

• Kannan et al: join k queues for replication and MDS codes

– Numerical bounds using block Markov chains

– Trade-off between numerical accuracy and computational effort

• Soljanin, Wornell et al: fork-join (n; k) queues for MDS codes

– Closed-form upper and lower bounds

– Loose bounds for most of the rate region

• Parag et al: fork-join (n; k) queues for all symmetric codes

– Tight closed-form approximations for all rate regions

– Stability region for all symmetric codes

7

CHALLENGES OF ANALYZING FORK-JOIN

Fork-join:

• Recall: Latency is defined as the average time spent in the fork-join system.

• Analyzing the waiting time using Markov Chains requires:

– Modeling individual queue evolutions that are dependent

– Encapsulating the execution history in MC

8

LATENCY ANALYSIS USING SPLIT-MERGE QUEUES

Fork-join:

Split-merge:

Split-merge queues provide an upper bound on fork-join.

9

LATENCY UPPER BOUND

• (𝑛, 𝑘) split-merge is equivalent to an 𝑀/𝐺/1 queue.

– Arrivals are Poison with rate 𝜆.

– Service time 𝑆 is the 𝑘th order statistic.

• Find E[𝑆] and var 𝑆 :

– Independent services times at the servers.

– Analyze the 𝑘th order statistic of exponential distributions of 1/𝜇.

• Compute the average latency:

– Use the Pollaczek-Khinchin formula for 𝑀/𝐺/1 queue.

• It gives an upper bound on the latency of fork-join system.

10

LATENCY UPPER BOUND

• Given i.i.d. service times 𝑋1, 𝑋2… ,𝑋𝑛.

• Equivalent service time 𝑆 = 𝑋(𝑘), i.e., the 𝑘th smallest of 𝑋1, 𝑋2… ,𝑋𝑛.

• Distribution for 𝑘th order statistic:

– 𝑓𝑥 𝑘
𝑥𝑘 =

𝑛!

𝑛−𝑘 ! 𝑘−1 !
𝐹 𝑥𝑘

𝑘−1𝑓 𝑥𝑘 1 − 𝐹 𝑥𝑘
𝑛−𝑘.

• Applying exponential service time distribution:

– 𝐸[𝑆] = 𝐻𝑛−𝑘,𝑛
1 /𝜇 and var[𝑆] = 𝐻𝑛−𝑘,𝑛

2 /𝜇2,

– where 𝐻𝑥,𝑦
𝑧 = σ𝑗=𝑥+1

𝑦 1

𝑗𝑧
is the generalized harmonic number of order 𝑧.

11

LATENCY UPPER BOUND

• The Pollaczek-Khinchin formula for 𝑀/𝐺/1 queue with service time 𝑆:

• Substituting the values of E[𝑆] and var 𝑆 , we find an upper bound on

the latency of fork-join systems.

𝑇 = 𝐸 𝑆 +
𝜆(𝐸 𝑆 2 + 𝑣𝑎𝑟 𝑆)

2(1 − 𝜆𝐸[𝑆])

12

LATENCY UPPER BOUND

• The upper bound is valid only when 1 − 𝜌𝐻𝑛−𝑘,𝑛
1 > 0.

– 𝐻𝑛−𝑘,𝑛
1 = σ𝑗=𝑛−𝑘+1

𝑛 1/𝑗 is the generalized harmonic number.

• This stability condition is loose compared to 𝜆 < 𝑛𝜇/𝑘 that was

derived for fork-join systems.

The expected latency 𝑇(𝑛,𝑘) for an 𝑛, 𝑘 fork-join system satisfies

𝑇(𝑛,𝑘) ≤
𝐻𝑛−𝑘,𝑛
1

𝜇
+
𝜆 𝐻𝑛−𝑘,𝑛

2 + 𝐻𝑛−𝑘,𝑛
1 2

2𝜇2(1 − 𝜌𝐻𝑛−𝑘,𝑛
1)

13

Fork-join:

• For an 𝑛, 𝑘 fork-join system, each request goes through a sequence

of 𝑘 stages of processing.

• In the 𝑗th stage, where 0 ≤ 𝑗 ≤ 𝑘 − 1, 𝑗 chunk tasks have been

served, and the request will depart when 𝑘 − 𝑗 more finish service.

• This results in a tandem-queue model!

LATENCY LOWER BOUND

14

LATENCY LOWER BOUND

Tandem queue with (𝑛 = 3, 𝑘 = 2)

stage 𝑗 = 0 stage 𝑗 = 1

• The service rate in the 𝑗th stage is at most 𝜇𝑗 = 𝑛 − 𝑗 𝜇.

– In the 𝑗th stage, at most (𝑛 − 𝑗) chunks are actively processed.

– The service time is the minimum of (𝑛 − 𝑗) exponential service times.

• The actual service rate is indeed lower because:

– As a request moves from the 𝑗th to the (𝑗 + 1)th stage, there may be

other tasks at the head of its respective queues.

34 𝜇0 𝜇12
𝜆

15

LATENCY LOWER BOUND

Tandem queue with (𝑛 = 3, 𝑘 = 2)

stage 𝑗 = 0 stage 𝑗 = 1

• Each stage is an 𝑀/𝑀/1 queue with arrival rate 𝜆 (Ross, 2019) and

service rate 𝜇𝑗 = 𝑛 − 𝑗 𝜇.

– The time for a request to move from the 𝑗th to the (𝑗 + 1)th stage is

bounded by 1/(𝜇𝑗 − 𝜆).

• A lower bound is given by the sum of mean service time in each of

the 𝑘 stages: 𝑇𝑛,𝑘 ≥ σ𝑗=0
𝑘−11/(𝜇𝑗 − 𝜆).

34 𝜇0 𝜇12
𝜆

16

LATENCY LOWER BOUND

The expected latency 𝑇(𝑛,𝑘) for an 𝑛, 𝑘 fork-join system satisfies

𝑇(𝑛,𝑘) ≥ ෍

𝑗=0

𝑘−1
1

𝑛 − 𝑗 𝜇 − 𝜆
.

• The lower bound is valid only when 𝜆 < 𝑛 − 𝑘 + 1 𝜇.

• This stability condition is loose compared to 𝜆 < 𝑛𝜇/𝑘 that was

derived for fork-join systems.

17

NUMERICAL EXAMPLES

Arrival rate 𝜆=1 and service rate 𝜇=10.

1 Joshi, Soljanin, Wornell (2015).

Arrival rate 𝜆=1 and service rate 𝜇=1.25.

18

FINDING A BETTER APPROXIMATION

• Recall that the tandem-queue model provides a loose bound by setting

the service rate in the 𝑗th stage with 𝜇𝑗 ≤ 𝑛 − 𝑗 𝜇.

– However, the maximum cannot be achieved due to only 𝑛 servers available.

• An improved approximation can be obtained through a better estimate

of service rate 𝜇𝑗 in the 𝑗th stage.

stage 𝑗 = 0

𝜇0
𝜆

stage 𝑗 = 1

𝜇1

stage 𝑗 = 𝑘 − 1

𝜇𝑗……

𝜇0 ≤ 𝑛 𝜇 𝜇1 ≤ 𝑛 − 1 𝜇 𝜇𝑘−1 ≤ 𝑛 − 𝑘 + 1 𝜇

19

LATENCY ANALYSIS USING TANDEM QUEUES

stage 𝑗 = 0

𝜇0
𝜆

stage 𝑗 = 1

𝜇1

stage 𝑗 = 𝑘 − 1

𝜇𝑗……

𝜇0 = 𝜇 𝜇1 = 𝜇 𝜇𝑘−1 = 𝑛 − 𝑘 + 1 𝜇

• Consider a tandem queue with resource pooling:

– Service rate is 𝜇 except for the last server.

– Use free resource (with probability 𝜋𝑗(0)) at queue 𝑗 + 1 to help with 𝑗.

• The service rate at each stage 𝑗 can be solved backwards.

……

+𝜇1𝜋1(0) + 𝜇2𝜋2(0)

20

LATENCY ANALYSIS USING TANDEM QUEUES

The expected latency 𝑇(𝑛,𝑘) for an 𝑛, 𝑘 fork-join system can be

approximated by:

𝑇(𝑛,𝑘) ≈ ෍

𝑗=0

𝑘−1
1

𝑛 − 𝑗 𝜇 − (𝑘 − 𝑗)𝜆
.

• The lower bound is valid only when 𝑘𝜆 < 𝑛𝜇.

• This stability condition is the same as that of fork-join systems.

21

NUMERICAL EXAMPLES

We choose 𝑛 = 24, arrival rate 𝜆 = 0.45, and service rate 𝜇 = 𝑘/𝑛.

22

NUMERICAL EXAMPLES

We choose arrival rate 𝜆 = 0.3, and service rate 𝜇 = 𝑘/𝑛 = 0.5.

23

GENERALIZATIONS

• i.i.d. and general service times:

– Joshi et al., 2014, Joshi et al., 2017.

• Each file 𝑖 encoded using an (𝑛, 𝑘𝑖) code and has arrival rate 𝜆𝑖 :

– Kumar et al., 2017.

24

SUMMARY

• Fork-join systems provide an analytical framework for the study of

erasure-coded storage, e.g.,

– minimizing file access latency.

– optimizing coding strategy.

• Upper and lower bounds to analyze the latency of general codes.

• A tight closed-form approximation of average latency.

• Average latency is better for MDS codes for all code-rates.

• It works with homogeneous file placement and service rates.

25

OPEN PROBLEMS FOR FORK-JOIN SYSTEMS

• Tight upper bound:

– There is still a large gap between the upper bound and the optimal

stability conditions even for exponential service times.

• General file placement:

– When each file is placed on a subset of the servers, no latency result is

available for this general setting.

• Heterogeneous servers:

– Analyzing the latency for heterogeneous servers with different service

time distribution is still an open problem.

• Approximations and guarantees:

– In the asymptotic regime?

PART 3: PROBABILISTIC
SCHEDULING

2

• Question: Which k subsets to choose

• Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

PROBABILISTIC SCHEDULING

3

• Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

• Since this is a scheme, it upper bounds the
latency of the optimal scheme

• Number of probability terms to optimize: (n
choose k) – hard problem

• Question: Can reduce terms?

PROBABILISTIC SCHEDULING

4

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

5

• Necessity: Given the set probability, we can find node probability.

• This is because when set is chosen, all nodes are chosen.

• Thus, node probability is the sum of all set probabilities such that the
node is part of the set.

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

6

• Sufficiency: Given node probabilities, there exist set probabilities.

• We use Farkas-Minkowski Theorem to show that the linear equations
from node probability to set probability has a valid solution for set
probabilities given node probabilities.

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

7

• This result demonstrates that independent node selection is sufficient.

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities ∏ij, there exists a scheme with
feasible load balancing P(Ai), where Ai are k-subsets, if and only if

PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

8

• Probabilistic Scheduling: Choose all possible
(n choose k) subsets with certain probabilities

• Probability over independent servers is
equivalent

• Now, request at each server with certain
probability and thus Poisson.

• Can characterize mean and variance of delay
at each server as described next.

LATENCY BOUND WITH PROBABILISTIC SCHEDULING

9

USE OF POLLACZEK-KHINCHIN THEOREM FOR M/G/1

• Let be the moment generating function of service at server j.

• Let be the arrival rate at server j

• The moment generating of the time chunk of file i spends in the queue
(including waiting in queue and service) is given as:

10

• Can characterize mean and variance of delay
at each server (M/G/1) queue (Pollaczek-
Khinchin Theorem)

• How about overall delay?

LATENCY BOUND WITH PROBABILISTIC SCHEDULING

11

• Overall delay is the maximum over the choice of servers which are selected
using probabilistic scheduling

• The moment generating function of the overall delay is given as:

• Bounding max by sum would only give a logarithmic gap in latency (due to
the use of moment generating functions).

OVERALL FILE DELAY- ORDERED STATISTICS

12

• Overall delay can be bounded as:

• Further, Jensen’s inequality gives bound on the average latency

OVERALL FILE DELAY- ORDERED STATISTICS

13

• Bounding max by sum in moment generating function would only give a
logarithmic gap in latency.

• This result allows multiple contents, state of the art has single file. Even for
single file, our bound is better for general distribution.

Theorem

Given mean and variance of delay at each server, the
expected latency of content i is upper bounded as follows

OVERALL FILE DELAY

14

• First approach for multiple files

• Works for any service distribution

• Improvement even for single file
[Shah et al, 2012, Joshi et al, 2013]

• Further improvement: Rather than
k out of n, can do d out of n – less
content from each helps latency,
but dth best hurts

ADVANTAGES OF THE PROPOSED BOUND

15

• Users are impatient.

• Increase in delay of web traffic
leads to loss of customers,
significantly affecting revenues.

TAIL LATENCY

• Long tail of latency is of particular concern, with 99.9th percentile
response times that are orders of magnitude worse than the mean

• We can use probabilistic scheduling to characterize the tail latency of a file
too. [Infocom 2017, TNSM 2019]

16

• Tail Latency of a file from a server is given as

• Overall tail latency can be computed using ordered statistics

TAIL LATENCY CALCULATIONS

17

• Overall tail latency can be bounded as:

TAIL LATENCY CALCULATIONS

18

• Using tail latency of the individual W, overall tail latency can be bounded as:

TAIL LATENCY CALCULATIONS

19

TAIL LATENCY INDEX

• File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

• Cdf of chunk size is given as Pareto Distribution with index ⍺

• What is tail index of Latency?

20

TAIL LATENCY INDEX

• File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

• Cdf of chunk size is given as Pareto Distribution with index ⍺

• What is tail index of Latency?

• Ans: ceil(⍺-1)

• Probabilistic scheduling is optimal for tail index.

21

SUMMARY

• Probabilistic Scheduling is proposed

• It allows for efficient bounds on mean and tail latency

• Probabilistic scheduling is optimal for tail index.

• Xiang, Lan, Aggarwal, and Chen, "Joint Latency and Cost Optimization for Erasure-coded Data
Center Storage," IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2443-2457, Aug.
2016 (previous version in Sigmetrics Performance Evaluation Review 2014).

• Aggarwal, Fan, and Lan, "Taming Tail Latency for Erasure-coded, Distributed Storage
Systems," in Proc. IEEE Infocom, May 2017

• Alabbasi, Aggarwal, and Lan, "TTLoC: Taming Tail Latency for Erasure-coded Cloud Storage
Systems," IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1609-
1623, Dec. 2019.

• Alabbasi and Aggarwal, "TTLCache: Taming Latency in Erasure-Coded Storage Through TTL
Caching," IEEE Transactions on Network and Service Management, vol. 17, no. 3, pp. 1582-
1596, Sept. 2020

22

OPEN PROBLEMS FOR PROBABILISTIC SCHEDULING SYSTEMS

• Sub-packetization:

– Sub-packetization can be used to access data from more servers with a

smaller part accessed from each server. For same size content from

each server, it is simple corollary, how about scheduling approach to

determine size of content from each server?

• Approximations and guarantees in Asymptotic Regime:

– Is it possible to extend the approximation technique to heterogenous

files and general service time distributions in the asymptotic regime?

Does asymptotic independence hold?

• General data center topology:

– Data center may have hierarchical storage (fog/edge storage). Further,

some locality properties and multiple chunks on same server may be

there in placement. Impact of such placement and its impacts is open.

PART 4: DELAYED-RELAUNCH
SCHEDULING

2/ 10

Coded access model

1 A1

2 A2

3 A1−A2

4 A1 +A2

Latency energy tradeoff

I Parallelization leads to download speedup

I Redundancy leads to increased energy consumption

3/ 10

Coded access model

S(0) S(1) S(2)S(3)S(4) S(5) S(6)

initial
servers
n0 = 10

S1
S2

S5
S6

S8
S9

Performance metrics for (n, k) coded system

I Completion time: kth order statistic S(k) of download times

I Server utilization time:
∑k−1

`=0 (n − `)(S(`+1) − S(`))

4/ 10

Coded access model
c-shifted unit-rate exponential download times

S(0) S(1) S(2)S(3)S(4) S(5) S(6)

initial
servers
n0 = 10

S1
S2

S5
S6

S8
S9

Download times (S1, . . . , Sn) i.i.d. (c , 1) shifted exponential

I Minimum S(1) is c-shifted n-rate exponential

I The difference S(`+1) − S(`) is (n − `)-rate exponential

I Mean completion time: c +
∑k−1

`=0
1

n−`

I Mean server utilization cost: nc + k

5/ 10

To code or not code?
Shifted exponential download times

1 A1

2 A2

3 A1−A2

4 A1 +A2

(n, k) coded system

I Completion time:
c +

∑k−1
`=0

1
n−`

I Server utilization time:
nc + k

1 A1

2 A2

3 A1−A2

4 A1 +A2

(k , k) uncoded system

I Completion time:
c +

∑k−1
`=0

1
k−`

I Server utilization time:
kc + k

6/ 10

Forking additional servers

1f1(A)

2f2(A)

3f3(A)

4f4(A)

5f5(A)

6f6(A)

7f7(A)

8f8(A)

9f9(A)

10f10(A)

in
it

ia
l

se
rv

er
s

fo
rk

ed
se

rv
er

s

Delayed start of requests in
multiple stages

I Stage i starts with download
from additional ni servers

I Stage i ends when
downloaded from `i servers

I Design variables are (ni , `i)
for each stage i

7/ 10

Performance Metric Computation

0 1 2 3 4 5 6 7 8

t0 t1 t2

start
Job fork when `0 = 2

tasks are finished

initial
servers
n0 = 6

forked
servers

n − n0 = 4

completion
Job

Stage 0 Stage 1

t0,1
t0,2

t1,1
t1,2

t1,3
t1,4

Server utilization
I Stage 0:

∑`0−1
j=0 (n0 − j)(ti ,j+1 − ti ,j)

I Stage 1:
∑`1−1

j=0 (n − `0 − j)(ti ,j+1 − ti ,j)

8/ 10

Initial servers n0 smaller than sub-tasks k

2 4 6 8 10 12
45

46

47

48

Fork task threshold

M
ea

n
ut

ili
za

ti
on

co
st

n0=24, No Forking

n0=11

n0=9

n0=7

n0=5

n0=3

Constant for any choice

2 4 6 8 10 12
2

4

6

8

Fork task threshold

M
ea

n
co

m
pl

et
io

n
ti

m
e

n0=3

n0=5

n0=7

n0=9

n0=11

n0=24, No Forking

Increasing in fork-task
threshold

I Mean utilization is identical to that of no-forking case

9/ 10

Initial servers n0 greater than or equal to sub-tasks k

2 4 6 8 10 12

35

40

45

Fork task threshold

M
ea

n
ut

ili
za

ti
on

co
st

n0=12

n0=13

n0=14

n0=16

n0=18

n0=20

n0=24, No Forking

Decreasing in fork-task
threshold

2 4 6 8 10 12
2

3

4

5

6

7

Fork task threshold

M
ea

n
co

m
pl

et
io

n
ti

m
e n0=12

n0=13

n0=14

n0=16

n0=18

n0=20

n0=24, No Forking

Increasing in fork-task
threshold

10/ 10

Tradeoff when n0 > k

2 3 4 5 6 7

36

38

40

42

44

46

48 1 2 3 4 5 6 7 8 9

10

11

12

1 2 3 4 5 6 7 8
9

10

11

12

12 3 4 5 6 7
8

9

10

11

12

123456
7

8

9

10

11

12

12345
6
7

8

9

10

11

12

12345
6
7
8
9

10

11

12

Mean completion time

M
ea

n
ut

ili
za

ti
on

co
st

n0=12

n0=13

n0=14

n0=16

n0=18

n0=20

n0=24, No Forking

I Choice of initial servers matters

I Fork-task threshold gives a true tradeoff when n0 > k

I Performance improvement!!

PART 5: EVALUATIONS AND
OTHER APPLICATIONS

2

• Where to place content?

• What code parameters to choose?

• Which disks to choose for access when the
content is requested?

• Baseline:
– where to place contents: Random
– what code to use: Fixed
– from where should content be served: Lowest queue servers

REQUIREMENTS FOR A DISTRIBUTED STORAGE SYSTEM

3

• Where to place content?

• What code parameters to choose?

• Which disks to choose for access when the
content is requested?

• Optimization Variables:
– Code Parameters
– Content Placement Servers
– Access Probabilities from different servers

(Latency bound as described before)
• Latency

– Connection delay
– Queuing delay

• Cost

– Storage Cost

LATENCY AND COST

4

VALIDATION ON OPEN SOURCE STORAGE SYSTEM

5

SETUP OF STORAGE SERVERS FOR VALIDATION

6

• 1000 files, size 150MB. Cost: $1 for 25MB, tradeoff factor of 200 sec/dollar,
chunk size 25MB

• Oblivious LB: Select nodes with probability proportional to service rate

• Random placement: Chooses best outcome of 100 random runs

JOINT OPTIMIZATION (CODE, PLACEMENT, ACCESS)
IS NEEDED

7

• 1000 files of size 150 MB, using erasure codes (12, 6), (10, 7), (10, 6), and
(8, 4), aggregate rate at 0.118/s.

LATENCY DISTRIBUTION

8

LATENCY INCREASES SUPER-LINEARLY WITH FILE SIZE

9

• Visualization of latency and cost tradeoff for file size of (150, 150, 100)MB
and arrival rates 1/(30 sec), 1/(30sec), 1/(40 sec).

TRADEOFF CURVES

10

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

11

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

12

• Caching is used to reduce
network congestion and
improve service delay

• What files to cache?

• One approach: Least
Recently Used (LRU) – add
current file in cache and
remove least recently used
file.

CACHING IN ERASURE CODED SYSTEMS

F1

…

Compute
Server

Storage Nodes

…
Compute
Server

Storage Nodes

…

Compute
Server

F1

F2

Storage Nodes

F3

F5

F2

F4

13

• Caching is used to reduce
network congestion and
improve service delay

• What files to cache?

• One approach: Least
Recently Used (LRU) – add
current file in cache and
remove least recently used
file.

• Issue: All chunks are stored
in cache. Partial chunks?

CACHING IN ERASURE CODED SYSTEMS

F1

…

Compute
Server

Storage Nodes

…
Compute
Server

Storage Nodes

…

Compute
Server

F1

F2

Storage Nodes

F3

F5

F2

F4

14

• Issue: All chunks are stored
in cache. Partial chunks?

• Let a file has (n,k) coding

• Let d<k of file chunks are in
cache

• On file access, k-d out of n-
d file chunks will be
requested using
probabilistic scheduling.

• Is this the best??

CACHING IN ERASURE CODED SYSTEMS

F1

…

Compute
Server

Storage Nodes

…
Compute
Server

Storage Nodes

…

Compute
Server

F1

F2

Storage Nodes

F3

F5

F2

F4

15

• Erasure Coded Systems
allow for functional caching

• Rather than exact chunks,
place functionally
equivalent chunks. Have file
encoded as (n+k,k), where
n are in the servers

• To place d in cache, use d of
the residual k chunks.

• On access, k-d out of n can
be requested.

FUNCTIONAL CACHING IN ERASURE CODED SYSTEMS

F1

Functional Cache
C1=A1+2A2+3A3+4A4

C2=4A1+3A2+2A3+A4

…

Compute
Server

C1

C2

Storage Nodes

…
Compute
Server

Storage Nodes

…

Compute
Server

F1

F2

Storage Nodes

F3

F5

F2

F4

Exact Cache
C1=F1

C2=F2

16

• The latency calculations
remain the same as before
except that the number of
servers to access changes
from k to k-d.

• This helps reduce the
latency with caching.

• Specific choice of d chunks
in the cache will have also
change the possibility of
accessed servers, while
functional caching is more
flexible due to using (n+k,k)
rather than (n,k) code.

LATENCY CALCULATION WITH FUNCTIONAL CACHING

F1

Functional Cache
C1=A1+2A2+3A3+4A4

C2=4A1+3A2+2A3+A4

…

Compute
Server

C1

C2

Storage Nodes

…
Compute
Server

Storage Nodes

…

Compute
Server

F1

F2

Storage Nodes

F3

F5

F2

F4

Exact Cache
C1=F1

C2=F2

17

IMPACT OF FUNCTIONAL CACHING

1000 files 100 MB each, (n=7,k=4)
1000 files, (n=7,k=4), cache size 10GB

• Distributed Erasure-coded storage allows for improved caching
strategies.

• Placing coded segments of the files help provide improved performance.

• The caching implemented on Ceph demonstrate improved performance
metrics

• Key Reference

– Aggarwal, Chen, Lan, and Xiang, "Sprout: A functional caching approach to minimize
service latency in erasure-coded storage," IEEE/ACM Transactions on Networking, vol.
25, no. 6, pp. 3683-3694, Dec 2017 (earlier version in ICDCS 2016).

• Erasure-coded caching with complete file in the cache, better than LRU

– Abubakr O. Alabbasi and Vaneet Aggarwal, "TTLCache: Taming Latency in Erasure-Coded
Storage Through TTL Caching," IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1582-1596, Sept. 2020,

• Other possible caching for Cloud Storage Systems

– Friedlander and Aggarwal, "Generalization of LRU Cache Replacement Policy with
Applications to Video Streaming," ACM Tompecs, Volume 4 Issue 3, August 2019.

18

SUMMARY

19

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

20

GOLBAL APPLICATION TRAFFIC SHARE 2021

21

• Video streaming applications represents 62% of the Internet traffic in US

• More than 50% of over-the-top video traffic is now delivered through CDNs

MOTIVATION

• Video Streaming rather than file
download.

• Each chunk is erasure-coded

• Coded chunks on server

• Ques: How does servers stream
video?

22

VIDEO STREAMING

• Video Streaming rather than file download.

• Ques: How does servers stream video?

• Approach:

• Issue: A complete video behind another.

• Resolution: Have multiple virtual queues, and each video can be decided
among these virtual queues

23

STREAMING APPROACH

• Video Streaming rather than file download.

• Ques: How does servers stream video?

• Approach

• Metric: Stall Duration. Very different from download time since stalls happen
anywhere, and all correlated segments need to be accounted.

• Characterized mean and tail of stall durations for this model.
24

STALL DURATION

• Compute the time in the queue for each server. Consider the entire data of a
file in server j, the requests are still Poisson.

• The start of service with additional of coded-chunk service times will give the
service times of the different coded-chunks.

• The ordered statistics are used to obtain the receipt of video segments at the
end user.

• From the download times, the play times are found
– Play time for first segment is max of startup delay and download time of 1st segment
– Play time for segment k is max of play time of segment k-1+play time of segment and

download time of segment k

• From play time, stall duration is calculated as actual play time of last segment
minus expected play time of last segment.

• As before, max are changed with sum in m.g.f.
25

KEY STEPS FOR STALL DURATION

26

BEYOND SINGLE TIER

27

BEYOND SINGLE TIER

• Multiple CDNs

• Caching at CDNs

• Caching in Edge cache

• Edge cache allows for multicast
since a later user can get previous
content from cache.

• CDN Cache policy: How many
initial chunks of each file?

• Edge Cache policy: Each requested
file is cached for a certain time,
and if not re-requested removed.

28

OPTIMIZATION PARAMETERS AND METRIC

• Access probabilities for CDNs, and
the different streams from CDN
and cloud storage.

• Auxiliary parameters for the bound

• Bandwidth parameters

• Cache placement in CDN

• Edge Cache removal parameter

• Metric: Weighted Stall Duration Tail
Probability

29

OPENSTACK IMPLEMENTATION RESULT

• CHF: Caching hot files, PSP: projected proportional service, PEA: Equal
probability access, PEC: Projected Equal Caching.

• New framework for video streaming over CDN

• Gave new bounds for stall duration with multiple flexibilities

• The results demonstrate improved performance metrics

• Single Tier

– Alabassi and Aggarwal, "Video Streaming in Distributed Erasure-coded Storage Systems:
Stall Duration Analysis," IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1921-
1932, Aug. 2018.

– Al-Abbasi and Aggarwal, "VidCloud: Joint Stall and Quality Optimization for Video
Streaming over Cloud," ACM Transactions on Modeling and Performance Evaluation of
Computing Systems, article no. 17, Jan 2021

• Multi-Tier

– Alabbasi, Aggarwal, Lan, Xiang, Ra, and Chen, "FastTrack: Minimizing Stalls for CDN-
based Over-the-top Video Streaming Systems," Accepted to IEEE Transactions on Cloud
Computing, Jun 2019.

– Alabbasi, Aggarwal, and Ra, "Multi-tier Caching Analysis in CDN-based Over-the-top
Video Streaming Systems," IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
835-847, April 2019.

30

SUMMARY

31

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

32

MEMORY CONSTRAINED SYSTEM

33

STORAGE MODEL: PLACEMENT

34

LATENCY OPTIMAL STORAGE AND ACCESS

35

MDS CODED STORAGE

36

DECODING COMPLEXITY

37

SCALING ISSUES OF MDS CODING

38

NUMERICAL RESULTS

• MDS coded storage is optimal for subfragmented storage

• Subfragmentation of file can lead to competitive performance of replication
coded storage

• When storage nodes have no memory constraints all coded storage have
identical latency performance

• Staircase coded storage
– Bitar, Parag, and Rouayheb, ``Minimizing latency for secure coded computing using secret

sharing via staircase codes,'' IEEE Transactions on Communications. 68(8):4609–4619, Aug
2020.

• Replication coded storage
– Jinan, Badita, Sarvepalli, Parag, ``Latency optimal storage and scheduling of replicated

fragments for memory-constrained servers,'' preprint, 2021.

39

SUMMARY

40

• Caching

• Video streaming over Cloud

• Memory-constrained system

• Coded Computing

OTHER APPLICATIONS

41

MATRIX MULTIPLICATION

42

DISTRIBUTED MATRIX MULTIPLICATION

43

REDUNDANCY FOR STRAGGLER MITIGATION

44

SUMMARY

PART 6: SUMMARY

2

• Modeling, characterization, and optimization of latency for distributed
storage systems

KEY PROBLEM IN THIS TUTORIAL

3

• Optimal scheduling is hard

• Multiple scheduling strategies are discussed – Reservation
Scheduling, Fork-Join Scheduling, Probabilistic Scheduling, Delayed-
Relaunch Scheduling

• The results have different assumptions on server distribution, files, and
service times.

• Implementation of scheduling approaches on real servers is
demonstrated with a discussion on optimizing storage systems

• Extensions to video streaming over cloud, and sub-packetization are
discussed

• The problem is related to cloud computing with stragglers.

• Novel queueing strategies, improved results, different storage server
architectures are some possibilities for future research.

SUMMARY

4

COMPARISON OF STATE-OF-ART: ASSUMPTIONS

5

COMPARISON OF KEY SCHEDULING STRATEGIES

6

NUMERICAL COMPARISON OF KEY SCHEDULING STRATEGIES

• MDS-Reservation and Fork-Join strategies do not achieve the optimal
stability region

• Probabilistic scheduling outperforms Fork-Join scheduling for all arrival
rates in this simulation

• Shifted
Exponential
Service Times, 12
servers

• Homogenous files
with (12,7) code

• Hyperparameter
search for
probabilistic
scheduling by
choosing best of
100 random
selections.

7• Promotion Code: 994513

THANK YOU

