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CLOUD STORAG
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beginners-guide-to-the-cloud-
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- Demand for storage services increasing rapidly (Backup, photos, videos)

« Companies increasing storage space rapidly (Baidu 2TB, Qihoo 360 36TB)
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GROWTH IN CLOUD STORAGE

amazon 17% CAGR
2013-2018
1,984
1,817

Consumers
in Millions .

2014 2015 2016 2017 2018

57% CAGR
2013-2018

Exabytes
per Year

4
2

2013 2014 2015 2016 2017 2018

Source: https://time.com/wp-content/uploads/2015/05/cloud_index_white_paper.pdf Zettabytes
per Year
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Growth in personal cloud storage and
sharing of photos/videos/documents

The global cloud storage market size is
projected to grow from USD 50.1
billion in 2020 to USD 137.3 billion by
2025, at a Compound

Annual Growth Rate (CAGR) of 22.3%
during the forecast period
(MarketsandMarkets.com).

Source: https://www.forbes.com/sites/gilpress/2015/10/28/cisco-says-cloud-traffic-to-
quadruple-by-2019-driven-by-consumers-mobility-and-iot/

Traditional Data Center (5% CAGR) =S
25% CAGR

{_ 2014-2019 |

B Cloud Data Center (33% CAGR)

2014 2015 2016 2017 2018 2019



EVOLVING DIGITAL LANDSCAPE

Information Theoretic Regime [File Tran sfer]

Celay Tolerance

[ Metwork F’rinter]

Emerging Applications

Voice

[ Cloud Storage | [ Video Streaming

Rate Requirements
PURDUE
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KEY PROBLEM IN THIS TUTORIAL

Data center storage nodes for the contents

" File1 ! Dispatch

—————————————

Requests for

? TT ? 1 ------ contents

Modeling, characterization, and optimization of latency for distributed
storage systems
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USER REQUIREMENTS

« Latency: Need content within certain
seconds

N ' N 4 )
Store All You Want Pay Only for What You Store Protect What You Store

- Reliability: Data should not be lost

« Cost: Less cost to store

« Security: Data should not go in wrong
hands

Efficient distributed storage that works on
the cloud with limited bandwidth links
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USER REQUIREMENTS

« Latency: Need content within certain
seconds

h 4 R 4 B
Store All You Want Pay Only for What You Store Protect What You Store

- Reliability: Data should not be lost

- Cost: Less cost to store % =
« Security: Data should not go in wrong
hands
Efficient distributed storage that works on Conflicting Requirements

the cloud with limited bandwidth links
Need redundancy
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REDUNDANCY WITH ERASURE CODES

\

Triple Replication — 2x storage overhead

Erasure codes: same reliability with less overhead as compared to
replication

All companies moving towards erasure coded storage systems

Cleversafe: 60% more capacity, 100 million X reliable, 80-90% less cost

Facebook’s advanced erasure codes Data Series: USENIX Best Paper Award - Erasure Coding in
byROBIN HARRIS onFRIDAY, 21 JUNE, 2013 Windows Azure Storage
13 Jun 2012 9:56 AM BradCalder | = 0

We want our data protected from device failures. When there is a failure we _ _ B _
We just published a paper desaribing how we Erasure Code data in Windows Azure Storage that

want to get our data back quick]_\' And we want to payas little as p0551ble forthe von agest Paper Award at the June 2012 USENIX Annual Technical Conference. This was joint
protection and the restore. How? work between Microsoft Research and the Windows Azure Storage team.

Lv-UNIVEHSITY



WHAT IS AN ERASURE CODE?

« Erasure Code (EC) involves encoding the message in a redundant manner

» EC transforms message of k symbols to n symbols
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WHAT IS AN ERASURE CODE?

Erasure Code (EC) involves encoding the message in a redundant manner

EC transforms message of k symbols to n symbols

» For MDS codes, any k un-erased symbols suffice (e.g., Reed-Solomon codes)

There exists a set of k un-erased symbols for recovery
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FILE REQUEST IN CLOUD STORAGE SYSTEMS

e e —

i (4,2) codingi i 5: b, |
La &b,
1213, : Scheduler ' 7:b,+b, |
31 ata, : L
i 4:a,+2a, i
| |

_____________ f fTT T ...... Requests

« Request for files, each file has multiple chunks

« Given placement, latency="




FILE REQUEST IN CLOUD STORAGE SYSTEMS

=

' 1 |

1 |

i I : > I:"1 :

B | | 6: b, |

1214, : Scheduler ' 7:by+b, !

| 3ra,+a, | S
4 a, i
| |

] f TTT T .- Requests

- Key Questions:

— What is the choice of scheduling strategy?

-~ How to characterize different measures of latency?
How much redundancy to add?

What is the optimal placement for coded chunks?
How to exploit the tradeoff between latency and cost?

——
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ASSUMPTIONS

File Request is Poisson (Each file request means get any k of n chunks)

There are multiple servers (say m)

Each server has a service rate given by some distribution

UUUUUUUUU gt UNIVERSITY
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ASSUMPTIONS

File Request is Poisson (Each file request means get any k of n chunks)
There are multiple servers (say m)

Each server has a service rate given by some distribution

Single file, k=n=1, this is M/G/1 queue model

In general, open problem

Queuing theory techniques don’t account for simultaneous arrivals at
different servers

isc (W4 PURDUE
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OPTIMAL SCHEDULING IS HARD

'
/
( /
| 5
! e
File A \“
| (4.2) coding| s
11 a, .
I 1 1 6: b2
1213 i Scheduler i 7: b,+b,
| 3 a,+a, | A,
4 a;+2a,

L] f 111 T - Requests

Erasure-coded storage.

Al
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QOO @

A2
R2

. B2
RZ

B.2
R3

A2
R3

A2
R}

Scheduling problem.




OPTIMAL SCHEDULING IS HARD

Very large state space due to synchronous arrival to multiple servers, and
need to keep track of their partial service

Latency characterizations are difficult, since the underlying processes are
multi-dimensional

Even when the process evolutions are Markov, equilibrium distributions
are unknown as it is equivalent to finding eigenfunctions of multi-
dimensional operators

Finding the latency optimal scheduling policy is still open

@4 PURDUE

SRINANSAS [ y | VERSITY




KEY SCHEDULING STRATEGIES

Reservation scheduling

Huang, Pawar, Zhang, Ramchandran (2012), Lee, Shah, Huang, Ramchandran
(2017)

Fork-join scheduling

Joshi, Liu, Soljanin (2014), Joshi, Soljanin, Wornell (2017), Kumar, Tandon, Clancy
(2017), Badita, Parag, Chamberland (2019)

Probabilistic scheduling

Xiang, Lan, Aggarwal, Chen (2014, 2016), Aggarwal, Fan, Lan (2017), Alabbasi,
Aggarwal, Lan (2019), Wang, Harchol-Balter, Jiang, Scheller-Wolf, Srikant (2019)

Delayed-relaunch scheduling

Badita, Parag, Aggarwal (2020, 2021) GW PURDUE
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RESERVATION SCHEDULING

R?'A,l

Wait

A2 Reservation(1)
R-'3

Al A2
Ry R,

Al A2
R |Rs

Al A,

« Reservation scheduling

— Huang, Pawar, Zhang, Ramchandran (2012), Lee, Shah, Huang, Ramchandran (2017)

Al
Rs

A2
R3

ALl A2
R Ry

A1 A2
R4 || Rs

Al )
R | Re™2

} Reservation(2)




FORK-JOIN SCHEDULING

Abandon

\|}

(n,k) fork-join queue:

Joshi, Liu, Soljanin (2014), Joshi, Soljanin, Wornell (2017),
Kumar, Tandon, Clancy (2017), Badita, Parag, Chamberland (2019).
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ABILISTIC SCHEDULING

13:C+C; Requests for
14: Cy#2C, | 44 § - contents

« Probabilistic scheduling chooses different k-subsets with some probability

- Xiang, Lan, Aggarwal, Chen (2014, 2016), Aggarwal, Fan, Lan
(2017), Alabbasi, Aggarwal, Lan (2019), Wang, Harchol-Balter, Jiang, Scheller-
Wolf, Srikant (2019)
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DELAYED-RELAUNCH SCHEDULING

Job fork when €5 = 2 Job

start tasks are finished comp:letion
t¢0 I E& I | I 12 | |
0 1 2 3 4 5 6 7 8
— 0.1

initial Plllllllllllll’402

servers |;

no : 6 T
E—/flﬁ

forked t13
—/tl,4
servers
e ——
n—ng=4
Stage 0 Stage 1

- Delayed-Relaunch scheduling: Job at some servers are started with a delay
based on completion of some tasks.

— Badita, Parag, Aggarwal (2020, 2021)




COMPARISON OF STATE-OF-ART: ASSUMPTIONS

MDS- Fork-Join | Probabilistic | Delayed

reservation relaunch
Homogenous Yes No No Yes

Files
Homogenous Yes Yes No Yes
Placement
Homogeneous Yes Yes No Yes
Servers
Exponential Yes No No No?
Service Time




COMPARISON OF STATE-OF-ART: ANALYSIS RESULTS

MDS- Fork- Probabilitic | Delayed
Reservation Join Relaunch
Optimal Homogenous No Exponential General General
Stability Region
Queuing Yes Yes Yes No
Analysis
Analysis for No Yes Yes No
general distribution
Closed Form No Yes Yes N/A®
Expressions
Asymptotic No No Yes Yes
Optimality
Tail No No Yes No
Characterization




.
NUMERICAL COMPARISON OF KEY SCHEDULING STRATEGIES

scheduling by
choosing best of
100 random
selections.

()]

o5 « Shifted
l .
-e-Fork Join Scheduling I Equner_:_t,'al 17
—  =e=Probabilistic Scheduling | ervice 1imes,
T 20 |- MDS-Reservation(1000) . SEervers
§ — - Homogenous files
o et ] with (12,7) code
£ v~
- > - Hyperparameter
% 0.2 search for
- — i epe 1.
= 10 21 215 22 probabilistic
-
-
©
4]
=

I
I
I
|
I
I
I
I
|
I
-0

0 |
20 22 24 26 28 30
Arrival Rate A
« MDS-Reservation and Fork-Join strategies do not achieve the optimal
stability region

« Probabilistic scheduling outperforms Fork-Join scheduling for all arrival

rates in this simulation A\
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» Introduction

« Fork-join scheduling

« Probabilistic scheduling

- Delayed-Relaunch scheduling

« Evaluations and other applications
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Scheduling problem in erasure-coded storage.
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SYSTEM MODEL

File storage

Each file divided into k chunks

Chunks encoded and stored on n servers

Arrival of requests

Each request wants entire file

Poisson arrival requests with rate 4

Time in the system

Until the recipient of entire file

Service at each server

i.i.d. exponential service time with rate u

@4 PURDUE
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FORK-JOIN SYSTEM

Abandon

A\/4

« (n,k) fork-join queue:

— Joshi, Liu, Soljanin (2014), Joshi, Soljanin, Wornell (2017),
Kumar, Tandon, Clancy (2017), Badita, Parag, Chamberland (2019).
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STABILITY OF FORK-JOIN SYSTEM

For the (n, k) fork-join system to be stable, the Poisson arrival rate 4
and the service rate u per server must satisfy 1 < nu/k.

« Proof outline:
— When k out of the n tasks finish service, the remaining n — k tasks abandon
their queues
— A task can be one of the abandoning tasks with probability (n — k) /n.
— The effective arrival rate to each queue is A minus abandonment A(n — k) /n.

- A—A(n — k)/n < u gives the condition.

@4 PURDUE
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- _______________________________________________________________________________________________________
PRIOR WORK AND KEY CONTRIBUTIONS

- Kannan et al: join k queues for replication and MDS codes

— Numerical bounds using block Markov chains

— Trade-off between numerical accuracy and computational effort

 Soljanin, Wornell et al: fork-join (n; k) queues for MDS codes

— Closed-form upper and lower bounds

— Loose bounds for most of the rate region

« Parag et al: fork-join (n; k) queues for all symmetric codes

— Tight closed-form approximations for all rate regions

— Stability region for all symmetric codes

“7iis. [6d PURDUE
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CHALLENGES OF ANALYZING FORK-JOIN

Fork-join:

« Recall: Latency is defined as the average time spent in the fork-join system.

« Analyzing the waiting time using Markov Chains requires:

-~ Modeling individual queue evolutions that are dependent

— Encapsulating the execution history in MC




LATENCY ANALYSIS USING SPLIT-MERGE QUEUES

4 3 2 . -
Fork-join: R .@
2 |[]
a5 |F

!

B
Split-merge: 2 T2 . - %

Blocked A
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LATENCY UPPER BOUND

(n, k) split-merge is equivalent to an M /G /1 queue.

— Arrivals are Poison with rate A.

IR
l«; l:

— Service time S is the kth order statistic. * 51515 A

Blocked A

Find E[S] and var|[S]:
— Independent services times at the servers.
— Analyze the kth order statistic of exponential distributions of 1/u.

Compute the average latency:

— Use the Pollaczek-Khinchin formula for M /G /1 queue.

It gives an upper bound on the latency of fork-join system.

PURDUE
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LATENCY UPPER BOUND

Given i.i.d. service times X{, X5 ..., X,,.

Equivalent service time § = Xy, i.e., the kth smallest of X4, X, ..., Xj,.

Distribution for kth order statistic:

n!

frgo (k) = (n—k)!(.k—l)! [F )] f () [1 — F ()] F

Applying exponential service time distribution:

E[S] = Hi_jn/pand var[S] = H2_ ., /i,

1, : :
where Hy ,, = §=x+1j_z is the generalized harmonic number of order z.

GW PURDUE
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LATENCY UPPER BOUND

The Pollaczek-Khinchin formula for M /G /1 queue with service time S

A(E[S]? + var[S])

I=ESI+ = a =25

Substituting the values of E[S] and var|S], we find an upper bound on
the latency of fork-join systems.

1S GW PURDUE
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LATENCY UPPER BOUND

The expected latency T, ) for an (n, k) fork-join system satisfies

Hy in +/1[H1% kn T (Hrll kn)2]
K 2.“ (1-pH kn)

The upper bound is valid only when 1 — pH,%_k,n > 0.

1 _\n - . :
Hy_xn= j=n—k+1 1/j is the generalized harmonic number.

This stability condition is loose compared to A < nu/k that was
derived for fork-join systems.

GW PURDUE
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LATENCY LOWER BOUND

: 2 (2]

/\/
Fork-join: ! @1\’14 a3 ]2 ] .@—

For an (n, k) fork-join system, each request goes through a sequence
of k stages of processing.

In the jth stage, where 0 < j < k — 1, j chunk tasks have been
served, and the request will depart when k — j more finish service.

This results in a tandem-queue model!

GW PURDUE
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LATENCY LOWER BOUND

Tandem queue with (n = 3,k = 2)

TR — e

stagej =0 stagej =1

The service rate in the jth stage is at most u; = (n — j)p.

In the jth stage, at most (n — j) chunks are actively processed.

The service time is the minimum of (n — j) exponential service times.

The actual service rate is indeed lower because:

As a request moves from the jth to the (j + 1)th stage, there may be
other tasks at the head of its respective queues.

. [€&%4 PURDUE
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LATENCY LOWER BOUND

Tandem queue with (n = 3,k = 2)

R — Ee—

stagej =0 stagej =1

Each stage isan M /M /1 queue with arrival rate A (Ross, 2019) and
service rate yi; = (n — j)u.

The time for a request to move from the jth to the (j + 1)th stage is
bounded by 1/(u; — 4).

A lower bound is given by the sum of mean service time in each of
the k stages: T, = Z;‘;& 1/(u; — 2).

1S GW PURDUE
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LATENCY LOWER BOUND

The expected latency T, ) for an (n, k) fork-join system satisfies

k—1
T
"= Li(n = ju -2
]=

The lower bound is valid only when A < (n — k + 1) .

This stability condition is loose compared to A < nu/k that was
derived for fork-join systems.
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NUMERICAL EXAMPLES

0.355 . . : . 10
\‘ : : —— TUO. k) simulation '
[y . : . === Upper bound 0
\ : : e | ower bound p
03F . e X 8
\ : : : = # = Required storage
\ : :
\
0] A
£ N L i
5 0.25 \ 6
(7]
c
[=]
a
w
]
c
[
[+)
=

Arrival rate A=1 and service rate u=10.

1Joshi, Soljanin, Wornell (2015).

—— T(10. K simulation

=== Upper bound v
welle— ower bound

Mean response time
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FINDING A BETTER APPROXIMATION

Recall that the tandem-queue model provides a loose bound by setting
the service rate in the jth stage with u; < (n — ).

However, the maximum cannot be achieved due to only n servers available.

LT e (e — [w—

stagej =0 stagej =1 stagej =k —1
Ho < (nu < m—1u -1 < (m—k+ Du

An improved approximation can be obtained through a better estimate
of service rate u; in the jth stage.
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LATENCY ANALYSIS USING TANDEM QUEUES

1 ’ ¥ —
— % ...... —_ W
stagej =0 stagej =1 stagej=k—1
po = utmmi(0)  pg = u+ ppmy(0) -1 =M —k+ Du

« Consider a tandem queue with resource pooling:

— Service rate is u except for the last server.

- Use free resource (with probability 77;(0)) at queue j + 1 to help with j.

- The service rate at each stage j can be solved backwards.

PURDUE
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LATENCY ANALYSIS USING TANDEM QUEUES

The expected latency T, for an (n, k) fork-join system can be

approximated by: —1
1

ik ~ z : —.
N NCENTEICESY

« The lower bound is valid only when kA < npu.

« This stability condition is the same as that of fork-join systems.
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- _______________________________________________________________________________________________________
NUMERICAL EXAMPLES

8 | | |

= Fork Join Simulation

m=mms Fork Join Approximation

=—d— Fork Join Lower Bound )
G | | Fork Join Upper Bound :L

Mean Latency, T{,, 1

Erasure Code Parameter k

We choose n = 24, arrival rate A = 0.45, and service rate u = k/n.
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- _______________________________________________________________________________________________________
NUMERICAL EXAMPLES

2 [ [ I

=t [ork Join Simulation

= === Fork Join Approximation
—te— Fork Join Lower Bound

Mean Latency, T(, )

Number of Servers, n

We choose arrival rate A = 0.3, and service rate u = k/n = 0.5.

GW PURDUE
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- i.i.d. and general service times:

— Joshi et al.,, 2014, Joshi et al., 2017.

- Each file i encoded using an (n, k;) code and has arrival rate 4; :

~ Kumaretal., 2017.
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- _______________________________________________________________________________________________________
SUMMARY

Fork-join systems provide an analytical framework for the study of
erasure-coded storage, e.g.,

minimizing file access latency.

optimizing coding strategy.

Upper and lower bounds to analyze the latency of general codes.
A tight closed-form approximation of average latency.

Average latency is better for MDS codes for all code-rates.

It works with homogeneous file placement and service rates.




OPEN PROBLEMS FOR FORK-JOIN SYSTEMS

Tight upper bound:

— There is still a large gap between the upper bound and the optimal
stability conditions even for exponential service times.

General file placement:

— When each file is placed on a subset of the servers, no latency result is
available for this general setting.

Heterogeneous servers:

— Analyzing the latency for heterogeneous servers with different service
time distribution is still an open problem.

Approximations and guarantees:

— In the asymptotic regime?
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» Question: Which k subsets to choose

« Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

""""""""

i]4,2l coding E Dispatch
ij.: Cj_ i
EE: Cs ;
: Requests for

iﬂf: Ci#2C; 1 444 4 = contents

PURDUE
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PROBABILISTIC SCHEDULING

 Probabilistic scheduling: Choose all possible (n
choose k) subsets with certain probabilities

 Since this is a scheme, it upper bounds the
latency of the optimal scheme

» Number of probability terms to optimize: (n
choose k) — hard problem

» Question: Can reduce terms?

1{4,2) coding Dispatch
11: ¢y :
12: G, !

13: Cy+C, E Requests for

14: C+2C; f 44t contents




PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities TT;;, there exists a scheme with
feasible load balancing P(A,), where A are k-subsets, if and only if

m

E 7T?;jj = ]f@ VZ
j=1
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.
PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities TT;;, there exists a scheme with
feasible load balancing P(A,), where A are k-subsets, if and only if

m

E 7T?;jj = ]f@ VZ
j=1

« Necessity: Given the set probability, we can find node probability.
« This is because when set is chosen, all nodes are chosen.

« Thus, node probability is the sum of all set probabilities such that the
node is part of the set.
P Virs. €W PURDUE
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PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities TT;;, there exists a scheme with
feasible load balancing P(A,), where A are k-subsets, if and only if

m

E 7T?;jj = ]f@ VZ
j=1

« Sufficiency: Given node probabilities, there exist set probabilities.

« We use Farkas-Minkowski Theorem to show that the linear equations
from node probability to set probability has a valid solution for set
probabilities given node probabilities.

GW PURDUE
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PROBABILITY OVER SUBSETS -> PROBABILITY OVER NODES

Theorem [Xiang Lan Aggarwal Chen 2014]

Given node selection probabilities TT;;, there exists a scheme with
feasible load balancing P(A,), where A are k-subsets, if and only if

m

E 7T?;jj = ]f@ VZ
j=1

 This result demonstrates that independent node selection is sufficient.
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LATENCY BOUND WITH PROBABILISTIC SCHEDULING

» Probabilistic Scheduling: Choose all possible
(n choose k) subsets with certain probabilities

- Probability over independent servers is
equivalent

- Now, request at each server with certain
probability and thus Poisson.

» Can characterize mean and variance of delay
at each server as described next.

1{4,2) coding Dispatch
11: ¢y : ‘

12: C,
13:Cy+C; ! Requests for
14: C+2C; f 44t contents




USE OF POLLACZEK-KHINCHIN THEOREM FOR M/G/1

Let Z;(t;) be the moment generating function of service at server j.
Let Aj be the arrival rate at server j

The moment generating of the time chunk of file i spends in the queue
(including waiting in queue and service) is given as:

5 [etiwfi,j] _ (1 N pj) tiZj (t’&)
ti — Aj (Zj(t:) — 1)

pi = MEX;] = A, [%Zj(tz‘) \tizo]

[:'_IIS(:
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LATENCY BOUND WITH PROBABILISTIC SCHEDULING

« Can characterize mean and variance of delay

at each server (M/G/1) queue (Pollaczek-
Khinchin Theorem)

« How about overall delay?

(4,2) coding E Dispatch

11: ¢, !

52: Cz i

13: Cy+C, E Requests for
14: C+2C; f 44t contents
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OVERALL FILE DELAY- ORDERED STATISTICS

Overall delay is the maximum over the choice of servers which are selected
using probabilistic scheduling

E[Q%] = ]wa;:,j [EAz hléax Wi,j]]

The moment generating function of the overall delay is given as:

9] = B, ]

jEA;

E 4 [sz‘,j [max e\ |Az“

JEA,;

Bounding max by sum would only give a logarithmic gap in latency (due to
the use of moment generating functions).

APSE [etiw”]] PURDUE
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OVERALL FILE DELAY- ORDERED STATISTICS

Overall delay can be bounded as:

E [etéQi:| < Egu [ZEWw [etiwi,j]]

JEA;

E.A?; [ZEWH [etiWi’j: 1(]'6.»4@)]

J

= ZEW” :etiwi’j: E 4, :1(9'644@')}
J

= Y Ew,, [V P(j € A)
: i |

— Z.ﬂ-?:,j]EWiJ [etiwi’j]
J

Further, Jensen’s inequality gives bound on the average latency

tHEQ] < | {et'iQi] | GW PURDUE
\"-—-l L
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- _______________________________________________________________________________________________________
OVERALL FILE DELAY

« Bounding max by sum in moment generating function would only give a
logarithmic gap in latency.

 This result allows multiple contents, state of the art has single file. Even for
single file, our bound is better for general distribution.

Given mean and variance of delay at each server, the
expected latency of content i is upper bounded as follows

PJ)tZ (t:)
EQ;] < —log Tij
Z Jt —A; (Z;(t;) — 1)
for any t; > 0, pj = A, [EZj(ti) |ti:0}, p; <l,and A; (Z;(t;) — 1) <
.
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ADVANTAGES OF THE PROPOSED BOUND

(=
i
L'

= 2
w o
~
L
]

First approach for multiple files

=2 2
=
T T
L
J
4
N

=2 f
e Y
T
-
~
J
a
3

Works for any service distribution

Cumulative Distribution Function
(=]
L
T
-
N
J
4

=2 2B
= e L

b

Ly

le. . % ... —— - - :
i’ e Service Time Distribution
’ . o .
---------- = = = Exponential Distribution with same Mean
""" Exponential Distribution with same Variance]

Improvement even for single file
[Shah et al, 2012, Joshi et al, 2013] ° 10 2 ency ooy 0 o

150

mm O Upper Bound
1= m Upper Bound of [].]

Further improvement: Rather thar
k out of n, can do d out of n — less

content from each helps latency, 3'"\ I
but dt" best hurts P
Z o\ T SR NN S S
10 15 20

40
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TAIL LATENCY

« Users are impatient.

Increase in delay of web traffic
leads to loss of customers,

significantly affecting revenues.

< ) 2
* f:;\s? é&' g o &é\ 6\*'36
S /s /8 f5 J& /8F

S8/ /9 e/ S 5 &&

Q /T & /& < 23 S §
50ms - - - - - -
200ms . . - -0.3% | -0.4% | 500
500ms| - [-0.6%| 1.0% |-0.9% | 1200
1000ms | -0.7% |-0.9% 1.9% E1 6% | 1900
2000ms |-1.8% [1-2.1% 4.4% |-3.8% | 3100

- Long tail of latency is of particular concern, with 99.9th percentile
response times that are orders of magnitude worse than the mean

We can use probabilistic scheduling to characterize the tail latency of a file

too. [Infocom 2017, TNSM 2019]




TAIL LATENCY CALCULATIONS

Tail Latency of a file from a server is given as

E[etii Wi.i]

eti*jo-
1 (1= pj) tsjZs(ts )
e b — Ay (Z(tig) — 1)

PI‘(W@,j Z O’) S

Overall tail latency can be computed using ordered statistics

2
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TAIL LATENCY CALCULATIONS

Overall tail latency can be bounded as:

PI‘ (Q@ Z O')

Pr (max W, ;> or)
JEA; ’

= BEg,wi, ma’X]'(Wi,jZO')]

Ea;,wi; Z [1(wi,jza)ﬂ

IA

= [Egy [Z [Pr(W;; > 0)]}
J

eA;

= Y miy [Pr(Wi 2 0)] i PURDUE

J




TAIL LATENCY CALCULATIONS

Using tail latency of the individual W, overall tail latency can be bounded as:

mii (1= p)tiiZ;(t: ;)
P < 3.7 J 3 2]
Z e'ii% t; i — Nj(Z;(ti ;) — 1)

forany t; ; > 0, p;j = A; [%Zj (ti5)
t@;’j.

=0 pj < 1, and A;(Z;(ti5)—1) <

GW PURDUE
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« File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

« Cdf of chunk size is given as Pareto Distribution with index o

(T /T)* =22y

0 =< am

Pr(L; > z) = {

« What is tail index of Latency?

€W PURDUE
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TAIL LATENCY INDEX

File-sizes are heavy tailed [Aggarwal et al., ICC3, 2013].

Cdf of chunk size is given as Pareto Distribution with index o

Pr(L; > ) = {{m’-‘n/f}a T> T,

D 7 < Tm

What is tail index of Latency?
Ans: ceil(a-1)

Probabilistic scheduling is optimal for tail index.

W4 PURDUE
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SUMMARY

Probabilistic Scheduling is proposed

It allows for efficient bounds on mean and tail latency

Probabilistic scheduling is optimal for tail index.

Xiang, Lan, Aggarwal, and Chen, "Joint Latency and Cost Optimization for Erasure-coded Data
Center Storage," IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2443-2457, Aug.
2016 (previous version in Sigmetrics Performance Evaluation Review 2014).

Aggarwal, Fan, and Lan, "Taming Tail Latency for Erasure-coded, Distributed Storage
Systems," in Proc. IEEE Infocom, May 2017

Alabbasi, Aggarwal, and Lan, "TTLoC: Taming Tail Latency for Erasure-coded Cloud Storage
Systems," IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1609-
1623, Dec. 20109.

Alabbasi and Aggarwal, "TTLCache: Taming Latency in Erasure-Coded Storage Through TTL
Caching," IEEE Transactions on Network and Service Management, vol. 17, no. 3, pp. 1582-
1596, Sept. 2020




OPEN PROBLEMS FOR PROBABILISTIC SCHEDULING SYSTEMS

« Sub-packetization:

— Sub-packetization can be used to access data from more servers with a
smaller part accessed from each server. For same size content from
each server, it is simple corollary, how about scheduling approach to
determine size of content from each server?

« Approximations and guarantees in Asymptotic Regime:

— Is it possible to extend the approximation technique to heterogenous
files and general service time distributions in the asymptotic regime?
Does asymptotic independence hold?

- General data center topology:

— Data center may have hierarchical storage (fog/edge storage). Further,
some locality properties and multiple chunks on same server may be
there in placement. Impact of such placement and its impacts is open.
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Coded access model

(U
(2
G A4
@ A1+A;

Latency energy tradeoff

» Parallelization leads to download speedup

» Redundancy leads to increased energy consumption

2/ 10



Coded access model

initial

servers |:
ng = 10 |:

S(0) S0) S@53)%4)  Se) Se)

Performance metrics for (n, k) coded system

> Completion time: kth order statistic S(x) of download times

» Server utilization time: Zéf;ol(n = 0)(Se+1) — Sy)

3/ 10



Coded access model

c-shifted unit-rate exponential download times

S0 5w %2535 Se) S

* A4 —0 0 A4 A4

initial _/52

servers _: H H H H - -

nop =10 |: H : /55

! : —
[————— T

Download times (Si,...,S,) i.id. (¢, 1) shifted exponential
» Minimum Sy is c-shifted n-rate exponential
> The difference Sp41) — Sy is (n — E)—rate exponential
» Mean completion time: C+Z£ 07 Z

» Mean server utilization cost: nc + k

4/ 10



To code or not code?

Shifted exponential download times

%- %-
& ] & ]
Gl A
(A Ak

(n, k) coded system (k, k) uncoded system
» Completion time: > Completion time:
k-1 1
c+ -0 mt C+ZZOk€
» Server utilization time: » Server utilization time:

nc+ k ke + k

5/10



Forking additional servers

-@ Delayed start of requests in
-@ multiple stages

> Stage / starts with download
-@ from additional n; servers
-@ » Stage / ends when
_______ downloaded from ¢; servers
:__f7_(_A_)__'® » Design variables are (n;, ¢;)

:_:%(_A_)__:: for each stage i

_______

6/ 10



Performance Metric Computation

Job fork when £g = 2 Job

start tasks are finished completion
to t1 t;
¢ % r: % % % i % %
0 1 2 3 4 5 6 7 8
E—/foyl
initial —/f&?

|
servers

np = 6 |: H "tl 1
11,2
forked ;—tlﬁ L
servers —/1,4

|
n—no=4:

Stage 0 - Stage 1

Server utilization
» Stage 0: foo:f,l(ng — j)(tij+1 — ti))
> Stage 1: 110 (n — fo — j)(tij1 — tif)

7/ 10



Initial servers ng smaller than sub-tasks k

-
1) |
4 48
]
c
.0
5
@ 474
N
= —=— ny=24, No Forking
S —a— np=11
c _
o 46 -{ —e— no=9
1] —— np=7
E np=>5
—e— np=3

45 T T T T T

T
2 4 6 8 10 12
Fork task threshold

Constant for any choice

Mean completion time

8 -
6 -

—e— np=3

ng=5

44 —e— np=7

—— p=9

—— np=11

—m— ng=24, No Forking
2 T T T T T

T
2 4 6 8 10 12
Fork task threshold

Increasing in fork-task
threshold

» Mean utilization is identical to that of no-forking case
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Initial servers ny greater than or equal to sub-tasks k

Mean utilization cost

S
o
1

—e— np=12
—w— np=13

N
o

T —— no=14
—e— np=16
—a— np=18
—— np=20
—a— np=24, No Forking

35 -

2 4 6 8 10 12
Fork task threshold

Decreasing in fork-task
threshold

Mean completion time

7 4 —e— ng=12
—— np=13
—— =14
6 —— no=16
—a— =18
—+— np=20
51 —a— ng=24, No Forking
4
3
2 T T T T T

2 4 6 8§ 10 12
Fork task threshold

Increasing in fork-task
threshold
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Tradeoff when ng > k

DDA E & & 6

—e— np=12
—o— np=13
—— np=14
—e— np=16
—a— ng=18
—— np=20
12 —m— ng=24, No Forking

Mean utilization cost

2 3 4 5 6 7
Mean completion time

» Choice of initial servers matters
» Fork-task threshold gives a true tradeoff when ng > k
» Performance improvement!!

10/ 10



§
~M\: \ \\H‘ un V \\\ \, “
i \\
\\\ \\\\\\\»\Q\}y\w \\“

[Hsc €4 PURDUE
, A 8 UNIVERSITY




REQUIREMENTS FOR A DISTRIBUTED STORAGE SYSTEM

Where to place content?

What code parameters to choose?

. . "\\\C'JnremB
Which disks to choose for access when the contenta =< = = reneeaeens

content is requested? ' (4.2) coding

| { 9: 0y
1:a, ' 6:b,
121, &Scheduler 7: b,+b,
1 3:a,+a, |

| 4: a,+2a,

Y s i 11 t f ...... Requests

Baseline:

— where to place contents: Random
— what code to use: Fixed
— from where should content be served: Lowest queue servers

PURDUE
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LATENCY AND COST

Where to place content?
What code parameters to choose?

Which disks to choose for access when the
content is requested?

; . p Content B
ContentA -~ e d‘
| : A ' (3.2) coding |
' (4.2) coding 5 b 1
| \ " l
Optimization Variables: % 6:b,
12:a Scheduler 7:by+b,
Code Parameters 3:a,4a,
Content Placement Servers jape,

) t tt T t «e REquests

Access Probabilities from different servers

(Latency bound as described before)
Latency

Connection delay
Queuing delay

Cost
Storage Cost

U [\ PURDUE
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VALIDATION ON OPEN SOURCE STORAGE SYSTEM

Tahse-LAFS
Initial release  May 2, 200701

Stable release  1.10[l/ 1 May 2013:
5 months ago

Written in Python

Operating system Windows, Linux, OS X
Type Cloud computing
License GNU GPL 2+ and otherl]
Website tahoe-lafs.org &

Tahoe-LAFS (Tahoe Least-Authority Filesystem) is an open source, secure, decentralized, fault-tolerant,
peer-to-peer distributed data store and distributed file system.[#1%] |t can be used as an online backup
system, or to serve as a file or web host similar to Freenet [0] depending on the front-end used to insert and
access files in the Tahoe system. Tahoe can also be used in a RAID-like manner to use multiple disks to
make a single large RAIN pool of reliable data storage.

@4 PURDUE
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JOINT OPTIMIZATION (CODE, PLACEMENT, ACCESS)
IS NEEDED

160

721 Latency cost
140
N Storage cost

120

8

80

Latency/Storage Cost

i

¢ Algo‘rithm Oblivious LB Random CP  Maximum

JLCM Optimal CP,EC Optimal EC EC

« 1000 files, size 150MB. Cost: S1 for 25MB, tradeoff factor of 200 sec/dollar,
chunk size 25MB

« Oblivious LB: Select nodes with probability proportional to service rate
« Random placement: Chooses best outcome of 100 random runs

Vs (@AW PURDUE
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LATENCY DISTRIBUTION

Empirical CDF
—(12,6) J,l"_
—(10,7)

Vi
| —(10,6) } Jf
—(8,4)
|
?

o
®

o
N

o
N

Cumulative Distribution Function

f r'_f | ’_rr'j
0 20 40 60 80 100 120 140 160 180
Latency (Sec)

1000 files of size 150 MB, using erasure codes (12, 6), (10, 7), (10, 6), and
(8, 4), aggregate rate at 0.118/s.
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LATENCY INCREASES SUPER-LINEARLY WITH FILE SIZE

\

e (11,6) «(10,7) :<(10,6) =(8,4) M Average Latency Il Analytical Bound
140

120

3

g

$iddiiliiid
T

Latency (sec)
=

Illililil
- g i 0

$iddliliiid
e

FRFREEFSES AR F SRS ES

File Size(MEB)
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—&—Average Latency  =ll=Analytical Bound
140

NN
N
110 \

105

=
[\
u

Latency (Sec)
'_I
N
o

=
=
u

100

10.4113 10.8514 11.3527 11.711 12
Average Storage Cost Per User (US Dollar)

« Visualization of latency and cost tradeoff for file size of (150, 150, 100)MB
and arrival rates 1/(30 sec), 1/(30sec), 1/(40 sec).
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OTHER APPLICATIONS

\

Caching

Video streaming over Cloud

Memory-constrained system

Coded Computing
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OTHER APPLICATIONS

\

Caching

Video streaming over Cloud

Memory-constrained system

Coded Computing
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« Caching is used to reduce
network congestion and
improve service delay

» What files to cache?

« One approach: Least
Recently Used (LRU) — add
current file in cache and

remove least recently used
file.




« Caching is used to reduce
network congestion and
improve service delay

« What files to cache?

« One approach: Least
Recently Used (LRU) — add
current file in cache and
remove least recently used

ile.

» Issue: All chunks are stored
n cache. Partial chunks?




» Issue: All chunks are stored
in cache. Partial chunks?

« Let afile has (n,k) coding

» Let d<k of file chunks are in
cache

« On file access, k-d out of n-
d file chunks will be
requested using
probabilistic scheduling.

» Is this the best??




FUNCTIONAL CACHING IN ERASURE CODED SYSTEMS

« Erasure Coded Systems
allow for functional caching

= = =

« Rather than exact chunks, |

. | |
pIac_e funCtlona”y . Compute _ Compute Compute _
equivalent chunks. Have file Server  GYN Server Server  WESN
encoded as (n+k,k), where

n are in the servers

e — e — e —
- To place d in cache, use d of B - - —
the residual k chunks. | | _ HEE _ - .
e — — e —
« On access, k-d out of n can Storage Nodes Storage Nodes Storage Nodes
be requested.
Functional Cache Exact Cache
C,=A+2A,+3A,+4A, C=F,
C,=4A+3A,+2A +A, C,=F,
‘K::‘:“.‘,
s (@AW PURDUE
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LATENCY CALCULATION WITH FUNCTIONAL CACHING

« The latency calculations
remain the same as before
except that the number of
servers to access changes

-

from k to k-d.
Compute _
S

« This helps reduce the crver R
latency with caching. .

« Specific choice of d chunks s —
in the cache will have also B |
change the possibility of — -~
accessed servers, while - _

functional caching is more
flexible due to using (n+k,k)
rather than (n,k) code.

Storage Nodes

Functional Cache

C,=A;+2A,+3A;+4A,
C,=4A+3A,+2A5+A,

=

Compute
Server

e —

e —

—

e —

. FEE

Storage Nodes

?I-S’C ebreiie

R UNIVERSITY

|
Compute —
Server R0

Storage Nodes

Exact Cache

C,=F,
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IMPACT OF FUNCTIONAL CACHING

24 ' ' ' ' ' ' ' Latency in Optimized Function Caching and Baseline
T T T T T
40000 - I e Optimized Caching Experimental 39021 i
201 T 1 Baseline Ceph Cachetier Experimental

N 35000 L | —#— Optimized Caching Numerical 4
£
216t 1 Z 30000 -
o =
2 ﬁ 25000 A i
=12} 1 » 2/1515
[F] w - -
£h Q 20000 y
s 8r : o .
= < 15000 / .
- i
- 9 #1163

al 4 g'} 10000 ) 7601 ]

< 5000 -
{} 1 1 | 1 1 I . 2%33 i
0 500 1000 1500 2000 2500 3000 3500 4000 0 8 10 . 384480
Cache size ( in multiples of chunk-size of 25 MB) 4MB 16MB 64MB 256MB 1GB

File Size

1000 files 100 MB each, (n=7,k=4)
1000 files, (n=7,k=4), cache size 10GB
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SUMMARY

Distributed Erasure-coded storage allows for improved caching
strategies.

Placing coded segments of the files help provide improved performance.

The caching implemented on Ceph demonstrate improved performance
metrics

Key Reference

Aggarwal, Chen, Lan, and Xiang, "Sprout: A functional caching approach to minimize
service latency in erasure-coded storage," IEEE/ACM Transactions on Networking, vol.
25, no. 6, pp. 3683-3694, Dec 2017 (earlier version in ICDCS 2016).

Erasure-coded caching with complete file in the cache, better than LRU

Abubakr O. Alabbasi and Vaneet Aggarwal, "TTLCache: Taming Latency in Erasure-Coded
Storage Through TTL Caching," IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1582-1596, Sept. 2020,

Other possible caching for Cloud Storage Systems

Friedlander and Aggarwal, "Generalization of LRU Cache Replacement Policy with
Applications to Video Streaming," ACM Tompecs, Volume 4 Issue 3, Aygus
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OTHER APPLICATIONS

\

Caching

Video streaming over Cloud

Memory-constrained system

Coded Computing
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GOLBAL APPLICATION TRAFFIC SHARE 2021

! " |W Video streaming
100 B Social networking
=
80 Messaging
Gaming
50 Marketplace
Filesharing
40 Cloud
VPN and security
. Audio

DUFIStr'EEerI Downstream
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« Video streaming applications represents 62% of the Internet traffic in US

« More than 50% of over-the-top video traffic is now delivered through CDNs

Today’s Over-the-Top Adaptive Streaming Delivery

Production Preparation and Staging Distribution Consumption

&\ N D ( :

Mult-birate Encapsulation
Encoding

Service Providers have little control and visibility into OTT services
«Content Providers have little control of the delivery of their content



VIDEO STREAMING
Video Streaming rather than file
download.
7 %
Each chunk is erasure-coded Ci2| o [BT 7
G |/ Segment (niky
v : Encoding E
Coded chunks on server E : :
— K ;) P
Gir, B Ciy’

Ques: How does servers stream
video?
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CEREesd ( y | VERSIT Y




STREAMING APPROACH

Video Streaming rather than file download.

Ques: How does servers stream video?

Approach:

Waiting Queue at Server g

eI e @ T
E.“:.; E‘HJE “,I—H ENENEENEENANEENEEEE v 02

Issue: A complete video behind another.

Resolution: Have multiple virtual queues, and each video can be decided
among these virtual queues




STALL DURATION

Video Streaming rather than file download.

Ques: How does servers stream video?

Approach

Waiting Queue at Server g

eI e @ T
E.“:.; E‘HJE “,I—H ENENEENEENANEENEEEE v 02

Metric: Stall Duration. Very different from download time since stalls happen

anywhere, and all correlated segments need to be accounted.
Characterized mean and tail of stall durations for this mod_e_l_’.




KEY STEPS FOR STALL DURATION

Compute the time in the queue for each server. Consider the entire data of a
file in server j, the requests are still Poisson.

The start of service with additional of coded-chunk service times will give the
service times of the different coded-chunks.

The ordered statistics are used to obtain the receipt of video segments at the
end user.

From the download times, the play times are found

Play time for first segment is max of startup delay and download time of 15t segment

Play time for segment k is max of play time of segment k-1+play time of segment and
download time of segment k

From play time, stall duration is calculated as actual play time of last segment
minus expected play time of last segment.
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As before, max are changed with sum in m.g.f.



BEYOND SINGLE TIER

Cloud Computing/Storage
o e
4 Dynamic Bandwidth
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BEYOND SINGLE TIER

« Multiple CDNs
__‘_{;Igu;:_i_pnmputingfsmr_g\ge_ )

« Caching at CDNs m e

( Dynamic Bané&-‘:dth

Allocatiol:i
- Caching in Edge cache Sched. & Virtual, Tpe g

Distributed
Cache

- Edge cache allows for multicast
since a later user can get previous
content from cache.

« CDN Cache policy: How many
initial chunks of each file?

Users/tenants Users/tenants

- Edge Cache policy: Each requested
file is cached for a certain time,

and if not re-requested removed.




OPTIMIZATION PARAMETERS AND METRIC

Access probabilities for CDNs, and
the different streams from CDN

and cloud storage. Sloud Somputing/Stotage

ﬂ Dynamic B:;ﬁﬂfa.fidth
Allocatiol:i

Auxiliary parameters for the bound A= o
Sched. & Virtual. “ipe== sftam - ~—— & 54 Streams
Bandwidth parameters Distributed
Cache

Cache placement in CDN

Edge Cache removal parameter

Metric: Weighted Stall Duration Tail
Probability

Users/tenants Users/tenants
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-Prop. Alg.
== Analy Bound

- CHF Alg.
EPSP Alg.
PEA Alg.

|22 PEC Alg.
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Weighted Stall-duration Tail Probability
= =
= =
Lad

150 200 250 300 350 A0 450 500 550
Number Of Video Files

« CHF: Caching hot files, PSP: projected proportional service, PEA: Equal
probability access, PEC: Projected Equal Caching.
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SUMMARY

New framework for video streaming over CDN
Gave new bounds for stall duration with multiple flexibilities

The results demonstrate improved performance metrics

Single Tier

Alabassi and Aggarwal, "Video Streaming in Distributed Erasure-coded Storage Systems:
Stall Duration Analysis," IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1921-
1932, Aug. 2018.

Al-Abbasi and Aggarwal, "VidCloud: Joint Stall and Quality Optimization for Video
Streaming over Cloud," ACM Transactions on Modeling and Performance Evaluation of
Computing Systems, article no. 17, Jan 2021

Multi-Tier

Alabbasi, Aggarwal, Lan, Xiang, Ra, and Chen, "FastTrack: Minimizing Stalls for CDN-
based Over-the-top Video Streaming Systems," Accepted to IEEE Transactions on Cloud
Computing, Jun 20109.

Alabbasi, Aggarwal, and Ra, "Multi-tier Caching Analysis in CDN-based Over-the-top
Video Streaming Systems," IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.

835-847, April 2019.
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OTHER APPLICATIONS

\

Caching

Video streaming over Cloud

Memory-constrained system

Coded Computing
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MEMORY CONSTRAINED SYSTEM

3/7

3/7

3/7

3/7

3/7

3/7

3/7
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Storing B size coded messages for a unit size message

» parallel access from all B servers

» a-fragment of message stored at each server

(se |
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LATENCY OPTIMAL STORAGE AND ACCESS

6 7 1

OOO0O00O0OO

7 1 2

A unit size divisible message m = (my, ..., my)

» replicated R = aB/V times
» storage: for each fragment, where to store each replica?

» access: for each server, sequence of access for replicas?
€4 PURDUE
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MDS CODED STORAGE
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Optimality of MDS coded storage

» Sequence of number of useful servers is the largest

» Latency optimal storage code
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Implementation challenges

» Requires sufficiently large alphabet or large fragment sizes

» Polynomial decoding complexity that can’t be parallelized
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SCALING ISSUES OF MDS CODING

Replication Coding MDS Coding

[ 1 1]
T ] ==l

Encoding growing data or redundancy

» Complete re-encoding of data blocks

> Potential data loss waiting for sufficient data blocks
y(us. (€34 PURDUE




NUMERICAL RESULTS

0.8

L

Normalized useful servers E[N(l;)]/B

Average-Random Replication-V-50
0.6 Upper bound-V-50
Average-Random Replication-V-100
= == Upper bound-V-100

0.4 4 Average-Random Replication-V-500
= == Upper bound-V-500
02 - Average-Random Replication-V-1000

=== Upper bound-V-1000
m— Average-Random MDS-V-1000

o

| | | |
0.2 0.4 0.6 0.8 1
Fraction of fragments downloaded ¢/ V
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SUMMARY

« MDS coded storage is optimal for subfragmented storage

« Subfragmentation of file can lead to competitive performance of replication
coded storage

« When storage nodes have no memory constraints all coded storage have
identical latency performance

« Staircase coded storage

— Bitar, Parag, and Rouayheb, ~"Minimizing latency for secure coded computing using secret
sharing via staircase codes," IEEE Transactions on Communications. 68(8):4609-4619, Aug
2020.

« Replication coded storage

— Jinan, Badita, Sarvepalli, Parag, ""Latency optimal storage and scheduling of replicated
fragments for memory-constrained servers," preprint, 2021.
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OTHER APPLICATIONS

\

Caching

Video streaming over Cloud

Memory-constrained system

Coded Computing




MATRIX MULTIPLICATION

A N S
Al*P A1 || A1z || A1z || Aia || A1s X1 A1 X
Az *: Aox || A2z || A2z || A2a || Azs X2 Ax X
A4..... x| = [asx
AMP A1 || Asz || Aaz || Asa || Ass Xa Ay X
As *: Asy || Asz2 || Ass || Asa || Ass X5 As X

Common computation in many algorithms

» Not scalable as the size of matrix grows

» Output A; X = ZJKZI Ai X; [IISC GW PURDUE
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DISTRIBUTED MATRIX MULTIPLICATION

f N

Aggregator

\, S

» Uncertainty in compute time at each server

» Total computation time limited by slowest server




REDUNDANCY FOR STRAGGLER MITIGATION

[ (A
Aggregator m
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SUMMARY

Aggregator

fr(A)
fs(A)
Storage systems Compute systems
Fragment download time | Subtask compute time
File download time Task compute time
Straggling download Straggling compute
Storage redundancy Compute redundancy







KEY PROBLEM IN THIS TUTORIAL

Data center storage nodes for the contents

" File1 ! Dispatch

—————————————

Requests for

? TT ? 1 ------ contents

Modeling, characterization, and optimization of latency for distributed

storage systems
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SUMMARY

« Optimal scheduling is hard

« Multiple scheduling strategies are discussed — Reservation
Scheduling, Fork-Join Scheduling, Probabilistic Scheduling, Delayed-
Relaunch Scheduling

« The results have different assumptions on server distribution, files, and
service times.

« Implementation of scheduling approaches on real servers is
demonstrated with a discussion on optimizing storage systems

» Extensions to video streaming over cloud, and sub-packetization are
discussed

« The problem is related to cloud computing with stragglers.

« Novel gueueing strategies, improved results, different storage server
architectures are some possibilities for future research./\
-
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COMPARISON OF STATE-OF-ART: ASSUMPTIONS

MDS- Fork-Join | Probabilistic | Delayed

reservation relaunch
Homogenous Yes No No Yes

Files
Homogenous Yes Yes No Yes
Placement
Homogeneous Yes Yes No Yes
Servers
Exponential Yes No No No?
Service Time
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COMPARISON OF KEY SCHEDULING STRATEGIES

MDS- Fork- Probabilitic | Delayed
Reservation Join Relaunch
Optimal Homogenous No Exponential General General
Stability Region
Queuing Yes Yes Yes No
Analysis
Analysis for No Yes Yes No
general distribution
Closed Form No Yes Yes N/A®
Expressions
Asymptotic No No Yes Yes
Optimality
Tail No No Yes No
Characterization

UNIVERSITY
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NUMERICAL COMPARISON OF KEY SCHEDULING STRATEGIES

scheduling by
choosing best of
100 random
selections.

()]

o5 « Shifted
l .
-e-Fork Join Scheduling I Equner_:_t,'al 17
—  =e=Probabilistic Scheduling | ervice 1imes,
T 20 |- MDS-Reservation(1000) . SEervers
§ — - Homogenous files
o et ] with (12,7) code
£ v~
- > - Hyperparameter
% 0.2 search for
- — i epe 1.
= 10 21 215 22 probabilistic
-
-
©
4]
=

I
I
I
|
I
I
I
I
|
I
-0

0 |
20 22 24 26 28 30
Arrival Rate A
« MDS-Reservation and Fork-Join strategies do not achieve the optimal
stability region

« Probabilistic scheduling outperforms Fork-Join scheduling for all arrival

rates in this simulation ,
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