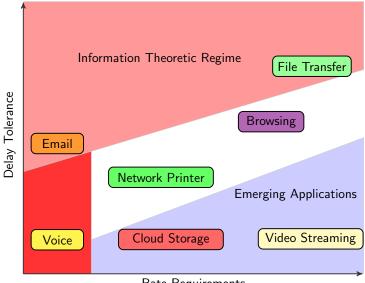
Low latency replication over memory constrained servers

Parimal Parag

Rooji Jinan Ajay Badita Pradeep Sarvepalli

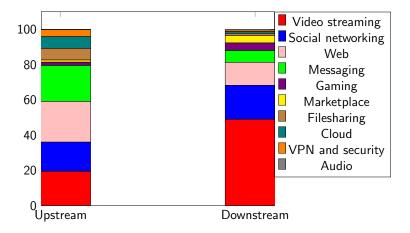
Sep 01, 2021

Evolving Digital Landscape

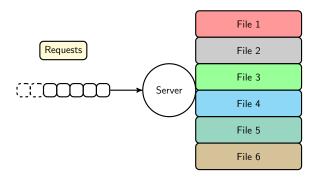


Rate Requirements

Global application traffic share 2021¹



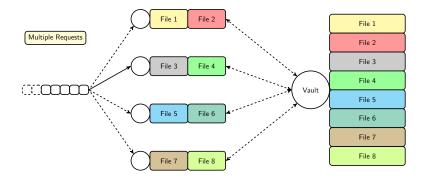
Centralized Paradigm



Potential Issues

- Not scalable with traffic load
- Susceptible to hardware failures and attacks

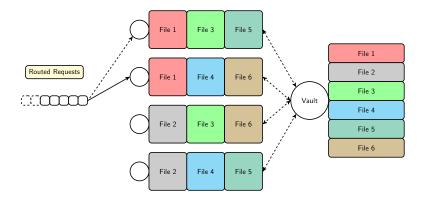
Distributed Paradigm



Potential Issues

Susceptible to hardware failures and attacks

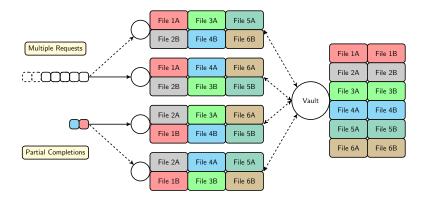
Resilience though redundancy



Latency redundancy tradeoff

- Download speedup due to parallel access
- Increased load due to redundant access

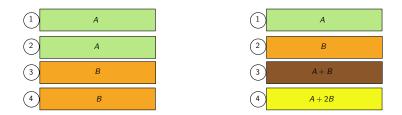
Load balancing through file fragmentation



Shared coherent access

- Availability and better content distribution
- File segments on multiple servers

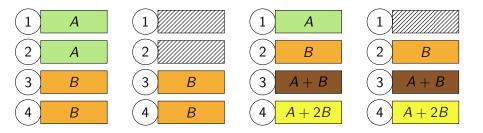
Coded Storage for single file



Single file divided into V fragments

- encoded into VR fragments
- each coded fragment stored over B = VR servers
- reconstruction by set of V coded symbols

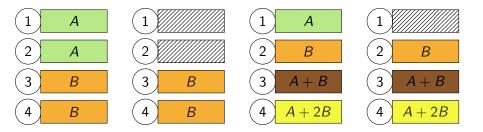
File download time



Mean file download time

- fragment downloads are *i.i.d.* and memoryless with unit rate
- ▶ parallel access from N_{ℓ} useful servers after ℓ downloads
- Harmonic sum of number of useful servers $\sum_{\ell=0}^{V-1} \frac{1}{N_{\ell}}$

File download time



Number of useful servers after ℓ downloads

- **replication:** $B R\ell$
- **MDS coding:** $B \ell$

Prior Work

MDS codes

Outperform replication codes in file access delay

▶ Huang et al(2012), Li et al(2016), Badita et al(2019)

Rateless codes

Offers near optimal performance

Mallick et al(2019)

Staircase codes

Subfragmentation improves latency performance

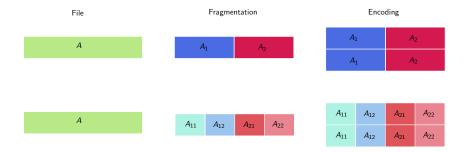
Bitar et al(2020)

Our model

Replication codes for a file with equal sized fragmentation over multiple servers where each can store multiple file fragments

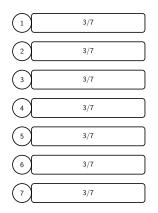
Storage model

fragmentation & encoding



File divided into V fragments & encoded into VR fragments

Memory constrained system



Storing αB size coded messages for a unit size message

- parallel access from all B servers
- α -fragment of message stored at each server

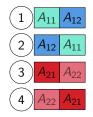
Storage model Placement

A ₁	<i>A</i> ₂	
A_1	<i>A</i> ₂	
A_1	<i>A</i> ₂	
	<i>A</i> ₁	
2	A_1	

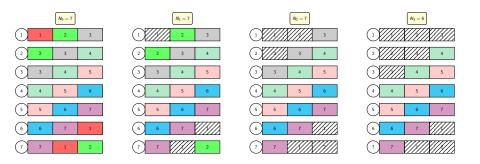
(2)	A_1
3	<i>A</i> ₂
4	<i>A</i> ₂

A ₁₁ A ₁₂	A ₂₁	A ₂₂
---------------------------------	-----------------	-----------------

A ₁₁	A ₁₂	A ₂₁	A ₂₂
A ₁₁	A ₁₂	A ₂₁	A ₂₂

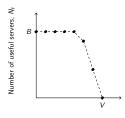


File download time



- Number of useful servers after ℓ th download, N_{ℓ}
- Fragment download times are *i.i.d.* exponential with unit rate
- Rate of download at ℓ th stage is N_{ℓ}
- The mean download time is $\mathbb{E} \sum_{\ell=0}^{V-1} \frac{1}{N_{\ell}}$

Optimality criterion



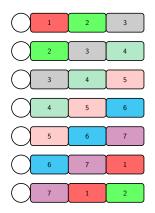
Number of downloads, ℓ

Normalized mean download time

$$\frac{1}{V}\mathbb{E}\sum_{\ell=0}^{V-1}\frac{1}{N_{\ell}} \geq \frac{1}{\frac{1}{V}\sum_{\ell=0}^{V-1}\mathbb{E}N_{\ell}}$$

Optimality condition for storage scheme Maximize the normalized mean number of useful servers averaged

Latency optimal storage and access



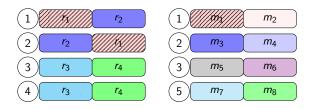
A unit size divisible message $m = (m_1, \ldots, m_V)$

• replicated $R = \alpha B/V$ times

storage: for each fragment, where to store each replica?

access: for each server, sequence of access for replicas?

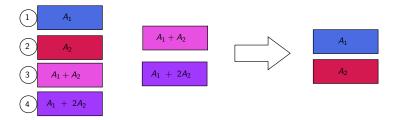
MDS coded storage



Optimality of MDS coded storage

- Sequence of number of useful servers is the largest
- Latency optimal storage code

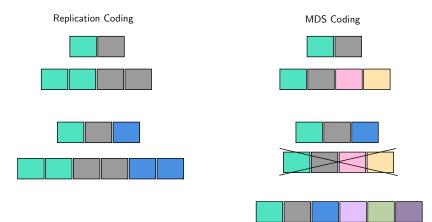
Decoding complexity



Implementation challenges

- Requires sufficiently large alphabet or large fragment sizes
- Polynomial decoding complexity that can't be parallelized

Scaling issues of MDS coding



Encoding growing data or redundancy

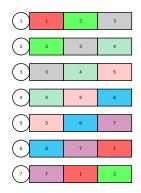
- Complete re-encoding of data blocks
- Potential data loss waiting for sufficient data blocks

Replication coded storage

 α -(V, R) replication coded storage over B servers

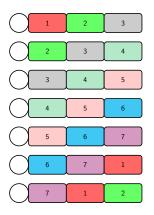
$$S \triangleq \{(S_1, S_2, \dots, S_B) : |S_b| = \alpha V \text{ for all } b, \alpha = R/B\}.$$

 $\frac{3}{7} - (7,3)$ replicated storage



• Fragment sets $S_1 = \{1, 2, 3\}, S_2 = \{2, 3, 4\}, \dots$

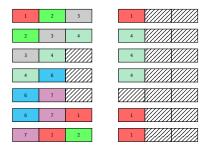
Problem statement



Find optimal storage scheme

$$S^* = rg\max_{S\in\mathcal{S}}rac{1}{V}\sum_{\ell=0}^{V-1}\mathbb{E} extsf{N}_\ell.$$

Upper bound on number of useful servers N_ℓ



Upper bound

- ▶ For $m \triangleq \lceil B/R \rceil$, we have $N_{\ell} \leqslant B\mathbb{1}_{\{\ell \leqslant V-m\}} + (V \ell)R\mathbb{1}_{\{\ell > V-m\}}$
- Normalized average of number of useful servers is upper bounded as

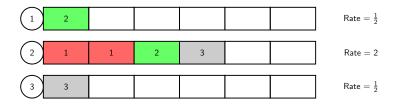
$$\frac{1}{BV}\sum_{\ell=0}^{V-1}N_{\ell}\leqslant 1-\frac{(m+1)}{2V}$$

Trivial case: $\alpha \ge 1$

Replication as good as MDS without memory constraint

- Each server can store all the fragments
- All servers remain useful throughout
- What if $\alpha < 1$?

Randomized (B, V, R) replication coded storage



Place the fragments on randomly chosen servers

- Each server can store all coded VR fragments
- \blacktriangleright Exponential download rate \propto the number of stored fragments

Asymptotically an α -(V, R) storage

- As V is increased with R/B fixed
- ▶ normalized storage at any server converges to $\alpha = R/B$
- service rate of servers converge to unity for almost all downloads

Asymptotic optimality

The randomized (B, V, R) storage scheme is an α -(V, R) storage scheme asymptotically in V.

Performance of Random Replication Storage

i.i.d. random storage vector Θ where $P\{\Theta_{vr} \neq b\} = (1 - 1/B)$

$$N_{\ell} = B - \sum_{b \in [B]} \prod_{v \notin I_{\ell}} \prod_{r \in [R]} \mathbb{1}_{\{\Theta_{vr} \neq b\}}.$$

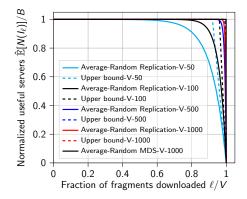
$$\frac{1}{BV} \mathbb{E} N_{\ell} = \frac{1}{V} \left(1 - \left(1 - \frac{1}{B}\right)^{R(V-\ell)} \right)$$

Mean number of useful servers

For the random (B, V, R) replication storage ensemble,

$$\frac{1}{BV}\sum_{\ell=0}^{V-1}\mathbb{E}N_{\ell} = 1 - \frac{\left(1 - \frac{1}{B}\right)\left(1 - \left(1 - \frac{1}{B}\right)^{RV}\right)}{V\left(1 - \left(1 - \frac{1}{B}\right)^{R}\right)}$$

Numerical Results



Conclusion

- We studied codes for distributed storage system with storage constraints and file subfragmentation for achieving low latency
- For exponential download times, we proposed to maximize mean number of useful servers instead of minimizing latency
- We show that MDS codes are optimal
- When there are no memory constraints at the server, replication coded file can be optimally placed
- When servers have memory constraints, we show that replication coding combined with probabilistic placement are optimal asymptotically

Practical storage and access

- Placement of coded fragments depends on certain properties of storage codes
- Optimal access sequence is a Markov decision process
- We have heuristic solution to both questions
- Optimal placement remains open

Acknowledgements

References

- R. Jinan, A. Badita, P. Sarvepalli, P. Parag. Low latency replication coded storage over memory-constrained servers. ISIT 2021.
- R. Jinan, A. Badita, P. Sarvepalli, P. Parag. Latency optimal storage and scheduling of replicated fragments for memory-constrained servers. arXiv, Sep. 2020. Under review at TIT.
- A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE Transactions on Information Theory. 65(8):4683–4698, Aug 2019.
- Vaneet Aggarwal and Tian Lan. Modeling and optimization of latency in erasure-coded storage systems. Foundations and Trends in Communications and Information Theory. Vol. 18, Issue 3, pp 380–525, 2021.