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Memory constrained system
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What are latency reducing storage schemes for replicated
fragments?

▶ parallel access from all B servers

▶ α-fragment of message stored at each server
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Coded Storage for single file
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Single file divided into V fragments

▶ encoded into VR fragments

▶ each coded fragment stored over B = VR servers

▶ reconstruction by set of V coded symbols
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Prior Work

MDS codes
Outperform replication codes in file access delay

▶ Huang et al(2012), Li et al(2016), Badita et al(2019)

Rateless codes
Offers near optimal performance

▶ Mallick et al(2019)

Staircase codes
Subfragmentation improves latency performance

▶ Bitar et al(2020)

Our model
Replication codes for a file with equal sized fragmentation over
multiple servers where each can store multiple file fragments
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Latency optimal storage and access
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A unit size divisible message m = (m1, . . . ,mV )

▶ replicated R = αB/V times

▶ storage: for each fragment, where to store each replica?

▶ access: for each server, sequence of access for replicas?
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File download time
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▶ Number of useful servers after ℓth download, Nℓ

▶ Fragment download times are i.i.d. exponential with unit rate

▶ Rate of download at ℓth stage is Nℓ

▶ The mean download time is E
∑V−1

ℓ=0
1
Nℓ
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Optimality criterion
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Optimality condition for storage scheme

Maximize the number of useful servers sequence
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(VR ,V ) MDS code on α-B system
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Optimality of MDS code

Reduction in useful servers is the least
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Decoding complexity
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Implementation challenges

▶ Requires sufficiently large alphabet or large fragment sizes

▶ Polynomial decoding complexity that can’t be parallelized
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Scaling issues of MDS coding

Replication Coding MDS Coding

Encoding growing data or redundancy

▶ Complete re-encoding of data blocks

▶ Potential data loss waiting for sufficient data blocks
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Replication coded storage
α-(V ,R) replication coded storage over B servers

S ≜ {(S1, S2, . . . ,SB) : |Sb| = αV for all b, α = R/B}.

3
7
− (7, 3) replicated storage
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▶ Fragment sets S1 = {1, 2, 3}, S2 = {2, 3, 4}, . . .
▶ Occupancy sets Φ1 = {1, 6, 7},Φ2 = {1, 2, 7}, . . .
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Upper bound on number of useful servers Nℓ
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Upper bound
▶ For m ≜ ⌈B/R⌉, we have Nℓ ⩽ B1{ℓ⩽V−m} + (V − ℓ)R1{ℓ>V−m}
▶ Normalized average of number of useful servers is upper bounded as

1

BV

V−1∑
ℓ=0

Nℓ ⩽ 1−
(m + 1)

2V
.
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Trivial case: α ⩾ 1
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Replication as good as MDS without memory constraint

▶ Each server can store all the fragments

▶ All servers remain useful throughout

▶ What if α < 1?
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Randomized (B ,V ,R) replication coded storage
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Place the fragments on randomly chosen servers

▶ Each server can store all coded VR fragments

▶ Exponential download rate ∝ the number of stored fragments
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Asymptotically an α-(V ,R) storage

▶ As V is increased with R/B fixed

▶ normalized storage at any server converges to α = R/B

▶ service rate of servers converge to unity for almost all
downloads

Rate = 1

Rate = 1

Rate = 1

Rate = 1

Rate = 1

Rate = 1

Asymptotic optimality

The randomized (B,V ,R) storage scheme is an α-(V ,R) storage
scheme asymptotically in V .
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Performance of Random Replication Storage

i.i.d. random storage vector Θ where P{Θvr ̸= b} = (1− 1/B)

▶ Nℓ = B −
∑

b∈[B]

∏
v /∈Iℓ

∏
r∈[R] 1{Θvr ̸=b}.

▶ 1
BV ENℓ =

1
V

(
1−

(
1− 1

B

)R(V−ℓ)
)

Mean number of useful servers
For the random (B,V ,R) replication storage ensemble,

1
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V−1∑
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ENℓ = 1−

(
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)(
1− (1− 1

B )
RV

)
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(
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R
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Numerical Results
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Bounding the number of useful servers
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Maximum overlaps

▶ Between fragment sets τM ≜ max|Sa ∩ Sb|
▶ Between occupancy sets λM ≜ max|Φv ∩ Φw |
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Bounding the number of useful servers
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Universal bounds
▶ For i ∈ {0, . . . , ⌊ K

τM
⌋} and ℓi ≜ iK − i(i − 1) τM2

Nℓ ⩾

{
B − i , ℓi ⩽ ℓ < ℓi+1,

(V − ℓ)(R − (V − ℓ− 1)λM
2 ), ℓ ⩾ V − ⌊ R

λM
⌋ − 1
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Bounding the number of useful servers
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Universal bounds
▶ The lower bounds are maximized for λM = τM = 1

▶ Less overlaps are better
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How to find the good storage schemes?

Table: Correspondence between designs and storage codes

t-(V ,K , λ) designs to codes
Design parameter Storage parameter
P: Points [V ]: File fragments
B: Blocks (Sb : b ∈ [B]): Fragment sets at servers
|P|: Number of points V : Number of file fragments
|B|: Number of blocks B: Number of servers
K : Size of each block K : Storage capacity at each server
R: Replication factor for each point R: Replication factor for each fragment
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Design based storage
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Small overlaps

▶ Between fragment sets τM = 1

▶ Between occupancy sets λM = 1
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Numerical Studies
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Conclusion

▶ We studied codes for distributed storage system with storage
constraints and file subfragmentation for achieving low latency

▶ For exponential download times, we proposed to maximize
mean number of useful servers instead of minimizing latency

▶ We show that MDS codes are optimal

▶ When there are no memory constraints at the server,
replication coded file can be optimally placed

▶ When servers have memory constraints, we show that
replication coding combined with probabilistic placement are
optimal asymptotically

▶ Placement of coded fragments depends on overlap properties
of storage codes

▶ Optimal access sequence is a Markov decision process
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