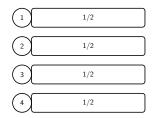
Low latency replication over memory constrained servers

Parimal Parag

Rooji Jinan Ajay Badita Pradeep Sarvepalli

June 23, 2022

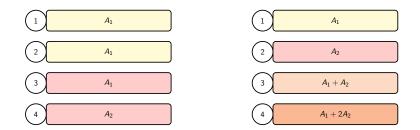
Memory constrained system



What are latency reducing storage schemes for replicated fragments?

- parallel access from all B servers
- α -fragment of message stored at each server

Coded Storage for single file



Single file divided into V fragments

- encoded into VR fragments
- each coded fragment stored over B = VR servers
- reconstruction by set of V coded symbols

Prior Work

MDS codes

Outperform replication codes in file access delay

▶ Huang et al(2012), Li et al(2016), Badita et al(2019)

Rateless codes

Offers near optimal performance

Mallick et al(2019)

Staircase codes

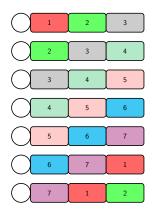
Subfragmentation improves latency performance

Bitar et al(2020)

Our model

Replication codes for a file with equal sized fragmentation over multiple servers where each can store multiple file fragments

Latency optimal storage and access



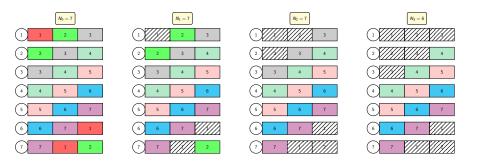
A unit size divisible message $m = (m_1, \ldots, m_V)$

• replicated $R = \alpha B/V$ times

storage: for each fragment, where to store each replica?

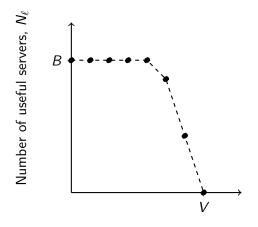
access: for each server, sequence of access for replicas?

File download time



- Number of useful servers after ℓ th download, N_{ℓ}
- Fragment download times are *i.i.d.* exponential with unit rate
- Rate of download at ℓ th stage is N_{ℓ}
- The mean download time is $\mathbb{E} \sum_{\ell=0}^{V-1} \frac{1}{N_{\ell}}$

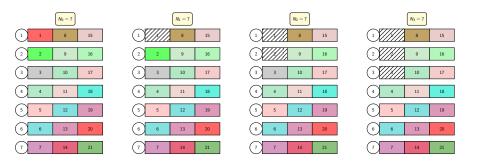
Optimality criterion



Number of downloads, ℓ

Optimality condition for storage scheme Maximize the number of useful servers sequence

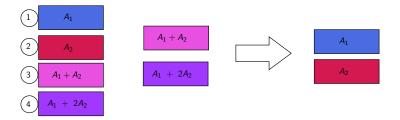
(VR, V) MDS code on α -B system



Optimality of MDS code

Reduction in useful servers is the least

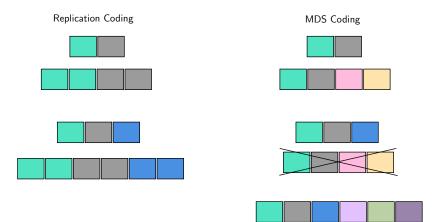
Decoding complexity



Implementation challenges

- Requires sufficiently large alphabet or large fragment sizes
- Polynomial decoding complexity that can't be parallelized

Scaling issues of MDS coding



Encoding growing data or redundancy

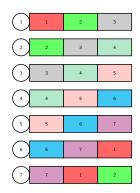
- Complete re-encoding of data blocks
- Potential data loss waiting for sufficient data blocks

Replication coded storage

 α -(V, R) replication coded storage over B servers

$$S \triangleq \{(S_1, S_2, \dots, S_B) : |S_b| = \alpha V \text{ for all } b, \alpha = R/B\}.$$

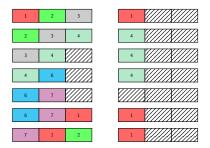
 $\frac{3}{7} - (7,3)$ replicated storage



Fragment sets $S_1 = \{1, 2, 3\}, S_2 = \{2, 3, 4\}, \dots$

• Occupancy sets $\Phi_1 = \{1, 6, 7\}, \Phi_2 = \{1, 2, 7\}, \dots$

Upper bound on number of useful servers N_ℓ



Upper bound

- ▶ For $m \triangleq \lceil B/R \rceil$, we have $N_{\ell} \leqslant B\mathbb{1}_{\{\ell \leqslant V-m\}} + (V \ell)R\mathbb{1}_{\{\ell > V-m\}}$
- Normalized average of number of useful servers is upper bounded as

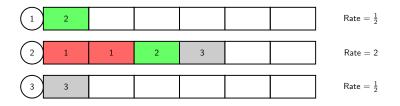
$$\frac{1}{BV}\sum_{\ell=0}^{V-1}N_{\ell}\leqslant 1-\frac{(m+1)}{2V}$$

Trivial case: $\alpha \ge 1$

Replication as good as MDS without memory constraint

- Each server can store all the fragments
- All servers remain useful throughout
- What if $\alpha < 1$?

Randomized (B, V, R) replication coded storage



Place the fragments on randomly chosen servers

- Each server can store all coded VR fragments
- \blacktriangleright Exponential download rate \propto the number of stored fragments

Asymptotically an α -(V, R) storage

- As V is increased with R/B fixed
- ▶ normalized storage at any server converges to $\alpha = R/B$
- service rate of servers converge to unity for almost all downloads



Asymptotic optimality

The randomized (B, V, R) storage scheme is an α -(V, R) storage scheme asymptotically in V.

Performance of Random Replication Storage

i.i.d. random storage vector Θ where $P\{\Theta_{vr} \neq b\} = (1 - 1/B)$

$$\mathsf{N}_{\ell} = B - \sum_{b \in [B]} \prod_{v \notin I_{\ell}} \prod_{r \in [R]} \mathbb{1}_{\{\Theta_{vr} \neq b\}}.$$

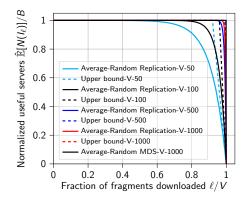
$$\frac{1}{BV} \mathbb{E} N_{\ell} = \frac{1}{V} \left(1 - \left(1 - \frac{1}{B}\right)^{R(V-\ell)} \right)$$

Mean number of useful servers

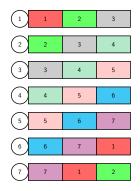
For the random (B, V, R) replication storage ensemble,

$$\frac{1}{BV}\sum_{\ell=0}^{V-1}\mathbb{E}N_{\ell} = 1 - \frac{\left(1 - \frac{1}{B}\right)\left(1 - \left(1 - \frac{1}{B}\right)^{RV}\right)}{V\left(1 - \left(1 - \frac{1}{B}\right)^{R}\right)}$$

Numerical Results



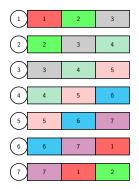
Bounding the number of useful servers



Maximum overlaps

- ▶ Between fragment sets $\tau_M \triangleq \max|S_a \cap S_b|$
- ► Between occupancy sets $\lambda_M \triangleq \max |\Phi_v \cap \Phi_w|$

Bounding the number of useful servers

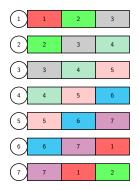


Universal bounds

► For
$$i \in \{0, ..., \lfloor \frac{\kappa}{\tau_M} \rfloor\}$$
 and $\ell_i \triangleq iK - i(i-1)\frac{\tau_M}{2}$

$$N_{\ell} \geqslant egin{cases} B-i, & \ell_i \leqslant \ell < \ell_{i+1}, \ (V-\ell)(R-(V-\ell-1)rac{\lambda_M}{2}), & \ell \geqslant V - \lfloor rac{R}{\lambda_M}
floor - 1 \end{cases}$$

Bounding the number of useful servers



Universal bounds

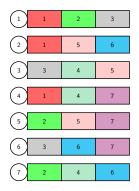
- ▶ The lower bounds are maximized for $\lambda_M = \tau_M = 1$
- Less overlaps are better

How to find the good storage schemes?

Table: Correspondence between designs and storage codes

t - (V, K, λ) designs to codes	
Design parameter	Storage parameter
\mathcal{P} : Points	[V]: File fragments
B: Blocks	$(S_b : b \in [B])$: Fragment sets at servers
$ \mathcal{P} $: Number of points	V: Number of file fragments
$ \mathcal{B} $: Number of blocks	B: Number of servers
K: Size of each block	K: Storage capacity at each server
R: Replication factor for each point	R: Replication factor for each fragment

Design based storage

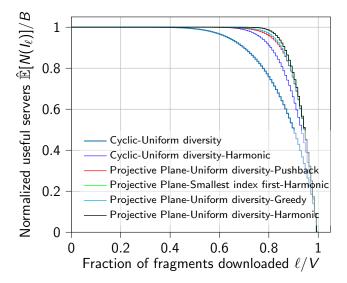


Small overlaps

▶ Between fragment sets $\tau_M = 1$

▶ Between occupancy sets $\lambda_M = 1$

Numerical Studies



Conclusion

- We studied codes for distributed storage system with storage constraints and file subfragmentation for achieving low latency
- For exponential download times, we proposed to maximize mean number of useful servers instead of minimizing latency
- We show that MDS codes are optimal
- When there are no memory constraints at the server, replication coded file can be optimally placed
- When servers have memory constraints, we show that replication coding combined with probabilistic placement are optimal asymptotically
- Placement of coded fragments depends on overlap properties of storage codes
- Optimal access sequence is a Markov decision process

Acknowledgements

References

- R. Jinan, A. Badita, P. Sarvepalli, P. Parag. Low latency replication coded storage over memory-constrained servers. ISIT 2021.
- R. Jinan, A. Badita, P. Sarvepalli, P. Parag. Latency optimal storage and scheduling of replicated fragments for memory-constrained servers. arXiv, Sep. 2020. TIT 2022.
- A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE Transactions on Information Theory. 65(8):4683–4698, Aug 2019.
- Vaneet Aggarwal and Tian Lan. Modeling and optimization of latency in erasure-coded storage systems. Foundations and Trends in Communications and Information Theory. Vol. 18, Issue 3, pp 380–525, 2021.