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The growing performance deficit

Deep learning compute demand1

▶ End of Moore’s law and Dennard scaling

▶ Can no longer keep adding more transistors and increasing core frequencies

▶ We’re accustomed to more and more compute

1
Image credit: https://kartikhegde.substack.com/p/accelerating-deep-learning-in-the
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Heterogeneous Computing2

Sources of heterogeneity

▶ Different generations of servers and
accelerators

▶ Pooling of all available compute resources
(CPUs, GPUs, NPUs)

▶ Compute resources may be run at
different speeds for energy conservation

▶ Compute cores optimized for different
operating regions, to deal with dynamic
workloads

▶ External factors—network bottlenecks,
data affinity, etc.

2
Image: https://www.anandtech.com/show/21445/qualcomm-snapdragon-x-architecture-deep-dive
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Load balancing policies—homogeneous servers

Join shortest queue (1) 3
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W. Winston, “Optimality of the shortest line discipline,” J. App. Prob., 14(1), 181–189, Mar 1977.
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Load balancing policies—heterogeneous servers

Join smallest workload queue (1) 4
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R. R. Weber, “On the optimal assignment of customers to parallel servers,” J. App. Prob., 15(2), 406–413,

Jun 1978.
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Load balancing policies—parallel processing of subtasks

Join the shortest queue (k)
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▶ Equivalent to (n, k) fork-join system 5

Pro Minimizes the mean task completion time

Con Feedback overhead linearly scaling in the number of servers

5
A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE

Transactions on Information Theory. 65(8):4683–4698, Aug 2019.
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Load balancing policies—low overhead alternative 6

Power-of-d (1)
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▶ Equivalent to (d , 1) fork-join queue

▶ When d = n, it is JSW

Power-of-d (k)
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▶ Equivalent to (d , 1) fork-join queue

▶ When d = n, it is (n, k) fork-join

6
M. Mitzenmacher, “The power of two choices in randomized load balancing,” IEEE Trans. Parallel Distrib.

Syst., vol. 12, no. 10, pp. 1094–1104, Oct. 2001.
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Heterogeneous servers— low overhead alternative

(d , k) fork-join system
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▶ Sample d servers, join k smallest

▶ Task departs on completion of all k sub-tasks
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Heterogeneous servers— zero overhead alternative7

(k , k) fork-join system with probabilistic scheduling
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k sub tasks

Task arrivals

Objective Find the optimal slow server selection probability p∗s that
minimizes the mean task completion time

7
R. Jinan, A. Badita, T. P. Bodas, and P. Parag. Load balancing policies without feedback using timed

replicas. Performance Evaluation. 162, 102381, Nov 2023.
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Related Works

Load balancing strategies in homogeneous system

▶ Without sub-division of tasks [M. Mitzenmacher et al.,
2001], [U.Ayesta et al., 2019], power-of-d variants

▶ With sub-division of tasks [A.Badita et al., 2019] [R.Jinan
et al., 2022],

Load balancing strategies in heterogenous system

▶ Without sub-division of tasks[Der Boor et al., 2021], [Jaleel
et al., 2022]: power-of-d variants

▶ With sub-division of tasks: Our work
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SystemParameters

Random selection of slow and fast servers
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k sub tasks

Task arrivals

▶ Probability of selecting ks slow and k − ks fast servers for any
task is

q(ks) =

(
k

ks

)
pkss (1− ps)

k−ks
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System Parameters

Arrival rate at individual servers

1

2
λf

3
λs
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5
λs

6

k sub tasks

Task arrivals

▶ Arrival at each server is a thinned Poisson process with the
arrival rate at slow and fast servers are

λs ≜
λn

k

(kps
nfs

)
=

λps
fs

, λf ≜
λp̄s

f̄s
.
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Performance metrics

Sub-task completion time

j
sub-task i

Tij

▶ Sub-task completion time at server j is Ti ,j ≜ Wi ,j + Xi ,j

▶ For slow server j , Ls(x) ≜ limi→∞ P {Ti ,j ⩽ x}
▶ For fast server j , Lf (x) ≜ limi→∞ P {Ti ,j ⩽ x}
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Performance metrics

Task completion time
1
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k sub tasks

Task arrivals

Ti ,2

Ti ,3

Ti ,5

Ti ≜ max
j∈I i

Ti ,j
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Key contributions

▶ Establishing asymptotic independence of the stationary
workload distribution in a heterogeneous server system with
two classes of heterogeneity

▶ Analytical computation of the limiting mean task completion
time for systems with an arbitrarily large number of servers

▶ A tight closed form approximation for the optimal selection
probability
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Asymptotic Independence

Theorem
If πk , π̂k are the equilibrium distributions for workloads in the first k = o(n

1
4 ) servers

of systems S and Ŝ respectively, the total variation distance

lim
n→∞

dTV(πk , π̂k ) = 0

Theorem
If asymptotic independence of equilibrium workload at any k queues for a large
number of servers holds, then

P {T∞ ⩽ x} = P ∩j∈I∞
{
T∞,j ⩽ x

}
= E

∏
j∈I∞

P
{
T∞,j ⩽ x

}
Therefore, the mean completion time is

E[T ] =
k∑

ks=0

( k

ks

)
pkss (1− ps)

ksLs(x)
ksLf (x)

k−ks =

∫
x∈R+

[1− (psLs(x) + p̄sLf (x))
k ]dx
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Asymptotic Independence

When k(n) =
[
n

2
3

]
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Sim: (n, k) = (10, 5)
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Sim: (n, k) = (102, 22)

Theory: (n, k) = (103, 102)

Sim: (n, k) = (103, 102)

Figure: System with fs = 0.5, λ = 1.2, (µs , µf ) = (0.5, 2.5).
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Bound on Mean Task Completion Time

Upper and Lower Bound

▶ Average smaller than maximum smaller than sum, i.e.

1

|I i |
∑
j∈I i

Ti ,j ⩽ max
j∈I i

Ti ,j ⩽
∑
j∈I i

Ti ,j

▶ Mean of sum of sub-task completion times

lim
i→∞

E
∑
j∈I i

Ti ,j = kps

∫
x∈R+

L̄s(x)dx + kp̄s

∫
x∈R+

L̄f (x)dx

▶ For general service times

lim
i→∞

E
∑
j∈I i

Ti ,j =
kps
λs

(
ρs +

λ2
sEX 2

s

2(1− ρs)

)
+

kp̄s
λf

(
ρf +

λ2
f EX 2

f

2(1− ρf )

)
,

where the load ρs = λsEXs < 1 and ρf = λf EXf < 1.
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Optimal slow server selection probability

Minimizing mean task completion time

▶ Find optimal probability p∗s that minimizes ET difficult to
compute analytically

▶ Find probability p̂s that minimizes both the upper and the
lower bound

▶ Approximate p∗s by p̂s

Exponentially distributed sub-task completion times

Defining τ1 ≜ f̄s(µf −
√
µsµf ),

p̂s =

0, λ ⩽ τ1,
1− τ1

λ

1+ f̄s
fs

√
µf
µs

, τ1 ⩽ λ < µs fs + µf f̄s .
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Slow server selection probabilities
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Figure: System with (µs , µf ) = (2, 2.5).
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Variation with the fraction of slow servers fs
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Figure: System with n = 103, k = 10
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Deterministic Scheduling

Deterministic selection
Select ks slow and k − ks fast servers

Theorem
The optimal selection probability of slow servers, converges to

lim
k→∞

p∗s =
k∗s
k
,

where k∗s is the optimal deterministic selection of slow servers. The
optimal probability of choosing ℓ servers converges to

lim
k→∞

q(ℓ) = 1{ℓ=kp∗s }.
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Mean number of slow servers
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Figure: System with n = 103, k = 100, fs = 0.5,(µs , µf ) = (2, 2.5).
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Comparison with other Load Balancing Policies
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Figure: System with fs = 0.5, (µs , µf ) = (0.5, 2.5)
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Asymptotic Independence

Theorem
Ifπk , π̂k are the equilibrium distributions for workloads in the first

k = o(n
1
4 ) servers of systems S and Ŝ respectively, the total

variation distance

lim
n→∞

dTV(π
k , π̂k) = 0.
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Asymptotic Independence

Proof sketch
We look at three systems with n servers:

▶ Original system S under consideration

▶ Independent system Ŝ , whereall the queues are independent

▶ Coupled systemS̃ , where no more than one arrival is allowed
in the first k queues

Focus
Joint distribution of queues at the first k servers of the original
system S , an independent system Ŝ and a coupled system S̃

dTV(π
k , π̂k) ⩽dTV(π

k , πk
τ ) + dTV(π

k
τ , π̃

k
τ ) + dTV(π̃

k
τ , π̃

k)

+ dTV(π̃
k , π̂k).
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Asymptotic Independence—coupled system evolution
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Asymptotic Independence—coupled system evolution
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Proof steps

▶ Original and coupled system differ when there is more than
one arrival at first k servers

▶ Coupled system has thinned arrivals since some arrivals to first
k servers are dropped

▶ For a finite time, bound the probability that the workload at
first k servers differs between two systems

▶ At any finite time, workload distribution at first k servers for
the original and the coupled systems are close

▶ For sufficiently large time, the workload distribution is close to
stationary distribution

▶ Workload distribution for coupled and independent systems is
close since the load differences are bounded
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Conclusion

▶ We show that the joint distribution of the stationary workload
across k queues becomes asymptotically independent as the

number of servers, n, grows and k = o(n
1
4 )

▶ We derive an upper and lower bound on the limiting mean
response time and identify the selection probability, ps , that
minimizes this bound

▶ Numerical experiments confirm that the selected probability
provides near-optimal performance
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How to reduce CPU power?

Energy proportionality

▶ Push CPUs to sleep.

▶ Dynamic voltage and frequency
scaling (DVFS).

Challenges in Homogeneous
multi-cores
▶ High performance at the cost

of high power consumption.

▶ Power efficient with degraded
performance.

Heterogeneous multi-core
processor (HMP)
A new architecture consisting of
CPUs with heterogeneous cores
having different power-performance
trade-offs.
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Key questions

f1

f2

f8

f9

f10

f16

OS Scheduler

γ1

γ2

γ8

γ9

γ10

γ16

Λγ1

Task arrival

Λ

Performance

Efficiency

Heterogeneous multi core processor

▶ What is the optimal workload split ?

▶ What is the operating frequency for all cores?
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Key contributions

▶ Power and performance model for CPUs with heterogeneous cores.

▶ Problem formulation for the workload splitting and
operating frequencies.

▶ HEMP—Heterogeneity enabled Energy-Minimizer with
Performance constraints.

▶ Comparison with Linux frequency governors
(upto 80% reduction in energy-delay product).
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Problem Formulation

µn
λn

Tij

µn ≜ αcn fn,

ρn =
λn

µn
,

W̄n(cn, fn, γn) =
1

µn − λn
,

P̄n = Psta + ρnPdyn.

(γ∗, f ∗) ≜ arg min
(γ,f )∈A

∑
n∈[N]

P̄n.

W̄n(cn, fn, γn) ≤ w .
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Optimal selection probability and frequency allocation
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, γ∗

j =
p∗e
N∗
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1{j∈E} +
1− p∗e
N∗
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1{j∈f }.
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Optimal splitting between classes
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▶ Constant frequency for all active cores of one type
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Comparison with Linux frequency governors
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Research Landscape
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