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The growing performance deficit

Deep learning compute demand?
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Heterogeneous Computing?

Sources of heterogeneity
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Different generations of servers and
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Load balancing policies—homogeneous servers

Join shortest queue (1) 3

3W. Winston, “Optimality of the shortest line discipline,” J. App. Prob., 14(1), 181-189, Mar 1977. 5/ 40



Load balancing policies—heterogeneous servers

Join smallest workload queue (1) *
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Jun 1978.

R. R. Weber, “On the optimal assignment of customers to parallel servers,” J. App. Prob., 15(2), 406-413,
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Load balancing policies—parallel processing of subtasks

Join the shortest queue (k)
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> Equivalent to (n, k) fork-join system °
Pro Minimizes the mean task completion time

Con Feedback overhead linearly scaling in the number of servers

5A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. |[EEE
Transactions on Information Theory. 65(8):4683-4698, Aug 2019. 7/ 40



Load balancing policies—low overhead alternative °

Power-of-d (1)

> Equivalent to (d, 1) fork-join queue
» When d = n, it is JSW

Power-of-d (k)
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»> Equivalent to (d, 1) fork-join queue
» When d = n, it is (n, k) fork-join

6M. Mitzenmacher, “The power of two choices in randomized load balancing,” |IEEE Trans. Parallel Distrib.

Syst., vol. 12, no. 10, pp. 1094-1104, Oct. 2001.

8/ 40



Heterogeneous servers— low overhead alternative

(d, k) fork-join system
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» Sample d servers, join k smallest

» Task departs on completion of all k sub-tasks
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Heterogeneous servers— zero overhead alternative’

(k, k) fork-join system with probabilistic scheduling
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Objective Find the optimal slow server selection probability p} that
minimizes the mean task completion time

7R. Jinan, A. Badita, T. P. Bodas, and P. Parag. Load balancing policies without feedback using timed
replicas. Performance Evaluation. 162, 102381, Nov 2023.
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Related Works

Load balancing strategies in homogeneous system

» Without sub-division of tasks [M. Mitzenmacher et al.,
2001], [U.Ayesta et al., 2019], power-of-d variants

» With sub-division of tasks [A.Badita et al., 2019] [R.Jinan
et al., 2022],

Load balancing strategies in heterogenous system

» Without sub-division of tasks[Der Boor et al., 2021], [Jaleel
et al., 2022]: power-of-d variants

» With sub-division of tasks: Our work
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SystemParameters

Random selection of slow and fast servers

Task arrivals
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» Probability of selecting ks slow and k — ks fast servers for any
task is

q(ks) = (2) phe(1 — p)khe
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System Parameters

Arrival rate at individual servers

A

OEd ¢

Task arrivals
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» Arrival at each server is a thinned Poisson process with the
arrival rate at slow and fast servers are
APs

As A2 2Ps

A M(kps) _ APs
k \ nfs fs '

wh

13/ 40



Performance metrics

Sub-task completion time

sub-task i [] ' ' '
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T

» Sub-task completion time at server j is T;; = Wi+ X,
» For slow server j, Ls(x) 2 lim;_s00 P{Ti; <x}

> For fast server j, L¢(x) = limjoo P{T;j < x}

14/ 40



Performance metrics

Task completion time
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Key contributions

» Establishing asymptotic independence of the stationary
workload distribution in a heterogeneous server system with
two classes of heterogeneity

» Analytical computation of the limiting mean task completion
time for systems with an arbitrarily large number of servers

> A tight closed form approximation for the optimal selection
probability
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Asymptotic Independence

Theorem )
If 7k, 7% are the equilibrium distributions for workloads in the first k = o(n4) servers

of systems S and S respectively, the total variation distance
lim dpy(rX,2K) =0
n— oo

Theorem

If asymptotic independence of equilibrium workload at any k queues for a large
number of servers holds, then

P{Too <x}=Pnjeroe {Tooj <x}=E [] P{Twj<x}
JjEI>®

Therefore, the mean completion time is

k
_ kY g VRS Lo ()R Lo (x)k—ks — — X ) x))¥dx
E[T]fg::o(ks)ps (1= p)* Ls(x)* Le(x) /xeRJl (psLs(x) + BsLr(x))"]d
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Asymptotic Independence

When k(n) = [n%}

| |

—— Theory: (n, k) = (10,5)
---Sim: (n, k) = (10,5)

—— Theory: (n, k) = (102,22)
100 _
---Sim: (n, k) = (10%,22)
—— Theory: (n, k) = (10%,10%)
--- Sim: (n, k) = (10%,10?)

Mean task completion time E[T]

T T T
0 5.10-2 0.1 0.15 0.2
Probability of slow server selection ps

Figure: System with f; = 0.5, A = 1.2, (us, ur) = (0.5, 2.5).
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Bound on Mean Task Completion Time
Upper and Lower Bound
P> Average smaller than maximum smaller than sum, i.e.
1
WZTi,j<maﬁ<Ti,j<ZTi,j
jeli /e jeri
» Mean of sum of sub-task completion times

IimEY T = kps/ Zs(x)dx+kﬁs/ L(x)dx
X€R+ X€R+

I—00 —
Jer

» For general service times

. kps AN2EX?2 kps A2EX?2
lim E T":i( #) 7( #),
iS00 %: W\t T ) oy Pt Ty
,I 1
where the load ps = AJEXs < 1 and pr = A\fEXF < 1.
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Optimal slow server selection probability

Minimizing mean task completion time
» Find optimal probability p; that minimizes ET difficult to
compute analytically

» Find probability ps that minimizes both the upper and the
lower bound

> Approximate p} by ps

Exponentially distributed sub-task completion times
Defining 71 £ f5(pr — \/Hishif),

0, A
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Slow

Slow server selection probability

server selection probabilities
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Figure: System with (us, 1f) = (2,2.5).

(b) n=10% k € {10,100, 400}.
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Variation with the fraction of slow servers £

Slow server selection probability
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Figure: System with n = 103, k = 10
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Deterministic Scheduling

Deterministic selection
Select ks slow and k — ks fast servers

Theorem
The optimal selection probability of slow servers, converges to

*
lim pl =-=2
k—oo ' * k'’

where k7 is the optimal deterministic selection of slow servers. The
optimal probability of choosing ¢ servers converges to

lim q(f) = ]]-{Eka;“}'

k—00
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Mean number of slow servers

Optimal number of slow servers k}

T T T T T T T T T T
0.1 03 050709 11131517 19 21
Arrival rate A

Figure: System with n = 103, k = 100, f; = 0.5,(us, itr) = (2,2.5).
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Comparison with other Load Balancing Policies

Mean task completion time E[T]
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Asymptotic Independence

Theorem
Ifrk, 7% are the equilibrium distributions for workloads in the first

1 A .
k = o(n4) servers of systems S and S respectively, the total
variation distance

lim dpy(7X, #%) = 0.
n—oo
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Asymptotic Independence

Proof sketch
We look at three systems with n servers:

» Original system S under consideration
» Independent system S, whereall the queues are independent

» Coupled systemg, where no more than one arrival is allowed
in the first k queues

Focus
Joint distribution of queues at the first k servers of the orlglnal
system S, an independent system S and a coupled system S

dTv(ﬂk,W ) <dTV(7T T ) + dTV( ﬁ) + dTv(fo,ﬁ'k)

+ dTv(ﬂ'k, 7Tk).
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Asymptotic Independence—coupled system evolution
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Asymptotic Independence—coupled system evolution
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Proof steps

» Original and coupled system differ when there is more than
one arrival at first k servers

» Coupled system has thinned arrivals since some arrivals to first
k servers are dropped

» For a finite time, bound the probability that the workload at
first k servers differs between two systems

> At any finite time, workload distribution at first k servers for
the original and the coupled systems are close

» For sufficiently large time, the workload distribution is close to
stationary distribution

» Workload distribution for coupled and independent systems is
close since the load differences are bounded
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Conclusion

» We show that the joint distribution of the stationary workload
across k queues becomes asymptotically independent as the
number of servers, n, grows and k = o(n4)

> We derive an upper and lower bound on the limiting mean
response time and identify the selection probability, ps, that
minimizes this bound

» Numerical experiments confirm that the selected probability
provides near-optimal performance
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How to reduce CPU power?

Energy proportionality

» Push CPUs to sleep.

» Dynamic voltage and frequency
scaling (DVFS).

Challenges in Homogeneous
multi-cores
» High performance at the cost
of high power consumption.
» Power efficient with degraded
performance.

Heterogeneous multi-core
processor (HMP)

A new architecture consisting of
CPUs with heterogeneous cores
having different power-performance
trade-offs.
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Key questions

“{Imo )

16

Efficiency

Heterogeneous multi core processor

OS Scheduler

Task arrival

» What is the optimal workload split ?

» What is the operating frequency for all cores?
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Key contributions

» Power and performance model for CPUs with heterogeneous cores.

» Problem formulation for the workload splitting and
operating frequencies.

» HEMP—Heterogeneity enabled Energy-Minimizer with
Performance constraints.

» Comparison with Linux frequency governors
(upto 80% reduction in energy-delay product).
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Problem Formulation

—_—
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A\ J
Tj
Hn = CVc,,fna
Pn = ﬁ, (v*, f*) = arg min Z P,.
Hn (77f)€A
_ 1 _ ne[N]
Wn(Cna fna'}/n) = i — N Wn(Cm fna’Yn) <w.

'5n = Psta+Pnden-
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Optimal selection probability and frequency allocation

A —O©

Task arrivals
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Optimal splitting between classes

‘Workload split PMF

Optimal workload split
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Comparison with Linux frequency governors

Average CPU Power (W)
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TensorFlow Lite workload

PF: Performance

SU: Schedutil

PSV: Powersave
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Research Landscape

Distributed
computing

Distributed
Al
Training
parallelism
Inference
opti-
mization
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