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The growing performance deficit

Deep learning compute demand1

▶ End of Moore’s law and Dennard scaling

▶ Can no longer keep adding more transistors and increasing core frequencies

▶ We’re accustomed to increasing compute

1
Image credit: https://kartikhegde.substack.com/p/accelerating-deep-learning-in-the
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Heterogeneous Computing2

Sources of heterogeneity

▶ Different generations of servers and
accelerators

▶ Pooling of all available compute resources
(CPUs, GPUs, NPUs)

▶ Compute resources may be run at
different speeds for energy conservation

▶ Compute cores optimized for different
operating regions, to deal with dynamic
workloads

▶ External factors—network bottlenecks,
data affinity, etc.

Achieving sustainability goals

▶ Idle cores save power

▶ Dynamic voltage and frequency scaling

2
Image: https://www.anandtech.com/show/21445/qualcomm-snapdragon-x-architecture-deep-dive
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Energy aware compute scheduling3

Heterogeneous multi core system
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Heterogeneous multi core processor

Objective

▶ Minimize core energy
consumption

▶ Meet service guarantees
such as mean or tail
compute latency

Control parameters at cores

▶ Load balancing

▶ Operating frequency

▶ Idle or active state

3
A. Priya, R. Choudhury, S. Patni, H. Sharma, M. Mohanty, K. Narayanam, U. Devi, P. Moogi, P. Patil, and

P. Parag. Energy-minimizing workload splitting and frequency selection for guaranteed performance over
heterogeneous cores. ACM International Conference on Future and Sustainable Energy Systems (e-Energy). pp.
308–322, June 2024.
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Load balancing policies

Homogeneous servers
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▶ Join shortest queue (1) a

a
W. Winston, “Optimality of the shortest line

discipline,” J. App. Prob., 14(1), 181–189, Mar 1977.

Heterogeneous servers
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▶ Join smallest workload (1) a

a
R. R. Weber, “On the optimal assignment of

customers to parallel servers,” J. App. Prob., 15(2),
406–413, Jun 1978.
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Load balancing policies—parallel processing of subtasks

Join the shortest queue/workload (k)
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▶ Equivalent to (n, k) fork-join system 4

Pro Minimizes the mean task completion time

Con Feedback overhead linearly scaling in the number of servers

4
A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE

Transactions on Information Theory. 65(8):4683–4698, Aug 2019.
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Load balancing policies—low overhead alternative 5

Power-of-d (1)
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▶ Equivalent to (d , 1) fork-join queue

▶ When d = n, it is JSW

Power-of-d (k)
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▶ Equivalent to (d , k) fork-join queue

▶ When d = n, it is (n, k) fork-join

5
M. Mitzenmacher, “The power of two choices in randomized load balancing,” IEEE Trans. Parallel Distrib.

Syst., vol. 12, no. 10, pp. 1094–1104, Oct. 2001.
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Heterogeneous servers

Low overhead alternativea
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▶ (d , k) fork-join system

▶ Sample d servers, join k
smallest

a
R. Jinan, A. Badita, T. P. Bodas, and P. Parag.

Load balancing policies without feedback using timed
replicas. Performance Evaluation. 162, 102381, Nov
2023.

Zero overhead alternativea
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k sub tasks

Task arrivals

▶ (k, k) fork-join system

▶ Probabilistic selection of
slow servers

a
M. Mohanty, G. Gautam, V. Aggarwal, and

P. Parag. Analysis of fork-join scheduling on
heterogeneous parallel servers. IEEE/ACM Transactions
on Networking. 32(6):4798–4809, Dec 2024.
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Performance comparison
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(a) n = 102, k = 10
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(b) n = 103, k = 102

Figure: System with fs = 0.5, (µs , µf ) = (0.5, 2.5)
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Energy aware compute scheduling
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Optimal selection probability
and frequency allocation

▶ Split workload between
performance and efficiency
cores according to single
selection probability p∗e

▶ Common frequency among
all active cores of identical
type f ∗ ≜ 1
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Optimal splitting between classes
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Optimal frequency

▶ Probabilistic split between two core types

▶ Constant frequency for all active cores of one type
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Comparison with Linux frequency governors
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Research Landscape
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