Energy aware compute scheduling in heterogeneous networks

Parimal Parag

Electrical Communication Engineering Indian Institute of Science

The growing performance deficit

Deep learning compute demand¹

Data collected by Kartik Hegde (kvhegde2@illinois.edu). Training FLOPS for transformers is based on Narayanan et al. "Efficient large-scale language model training on gpu clusters using megatron-Im". In SC'22, for others it is calculated as FLOPS/Forward pass* #dataset * #epochs * 3.

- End of Moore's law and Dennard scaling
- Can no longer keep adding more transistors and increasing core frequencies
- We're accustomed to increasing compute

 $^{{}^{1}{\}sf Image\ credit:\ https://kartikhegde.substack.com/p/accelerating-deep-learning-in-the}$

Heterogeneous Computing²

Sources of heterogeneity

- Different generations of servers and accelerators
- Pooling of all available compute resources (CPUs, GPUs, NPUs)
- Compute resources may be run at different speeds for energy conservation
- Compute cores optimized for different operating regions, to deal with dynamic workloads
- External factors—network bottlenecks, data affinity, etc.

Achieving sustainability goals

- Idle cores save power
- Dynamic voltage and frequency scaling

 $^{^2 {\}sf Image: \ https://www.anandtech.com/show/21445/qualcomm-snapdragon-x-architecture-deep-dive}$

Energy aware compute scheduling³

³A. Priya, R. Choudhury, S. Patni, H. Sharma, M. Mohanty, K. Narayanam, U. Devi, P. Moogi, P. Patil, and P. Parag. Energy-minimizing workload splitting and frequency selection for guaranteed performance over heterogeneous cores. *ACM International Conference on Future and Sustainable Energy Systems (e-Energy)*. pp. 308–322, June 2024.

Load balancing policies

^aW. Winston, "Optimality of the shortest line discipline," J. App. Prob., 14(1), 181–189, Mar 1977.

Heterogeneous servers

^aR. R. Weber, "On the optimal assignment of customers to parallel servers," J. App. Prob., 15(2), 406–413, Jun 1978.

Load balancing policies—parallel processing of subtasks

Join the shortest queue/workload (k)

Equivalent to (n, k) fork-join system ⁴

Pro Minimizes the mean task completion time

Con Feedback overhead linearly scaling in the number of servers

⁴A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE Transactions on Information Theory. 65(8):4683–4698, Aug 2019.

Load balancing policies—low overhead alternative ⁵

⁵M. Mitzenmacher, "The power of two choices in randomized load balancing," IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094–1104, Oct. 2001.

Heterogeneous servers

- ▶ (*d*, *k*) fork-join system
- Sample d servers, join k smallest

Zero overhead alternative^a

- \blacktriangleright (k, k) fork-join system
- Probabilistic selection of slow servers

^aR. Jinan, A. Badita, T. P. Bodas, and P. Parag. Load balancing policies without feedback using timed replicas. *Performance Evaluation*. 162, 102381, Nov 2023.

^aM. Mohanty, G. Gautam, V. Aggarwal, and P. Parag. Analysis of fork-join scheduling on heterogeneous parallel servers. *IEEE/ACM Transactions* on *Networking*. 32(6):4798–4809, Dec 2024.

Performance comparison

Figure: System with $f_s = 0.5$, $(\mu_s, \mu_f) = (0.5, 2.5)$

Energy aware compute scheduling

Optimal selection probability and frequency allocation

- Split workload between performance and efficiency cores according to single selection probability p^{*}_e
- Common frequency among all active cores of identical type $f^* \triangleq \frac{1}{\alpha} \left(\Lambda \gamma + \frac{1}{w} \right)$
- Number of active cores N^{*}_{e,1}, N^{*}_{p,1}

Optimal splitting between classes

- Probabilistic split between two core types
- Constant frequency for all active cores of one type

Comparison with Linux frequency governors

TensorFlow Lite workload PF: Performance SU: Schedutil PSV: Powersave

Research Landscape

Acknowledgements

References

- M. Mohanty, G. Gautam, V. Aggarwal, and P. Parag. Analysis of fork-join scheduling on heterogeneous parallel servers. *IEEE/ACM Transactions on Networking*. 32(6):4798–4809, Dec 2024.
- A. Priya, R. Choudhury, S. Patni, H. Sharma, M. Mohanty, K. Narayanam, U. Devi, P. Moogi, P. Patil, and P. Parag. Energy-minimizing workload splitting and frequency selection for guaranteed performance over heterogeneous cores. *ACM International Conference on Future and Sustainable Energy Systems* (e-Energy). pp. 308–322, Jun 2024.
- R. Jinan, A. Badita, T. P. Bodas, and P. Parag. Load balancing policies without feedback using timed replicas. *Performance Evaluation*. 162, 102381, Nov 2023.
- R. Jinan, G. Gautam, P. Parag, and V. Aggarwal. Asymptotic analysis of probabilistic scheduling for erasure-coded heterogeneous systems. ACM SIGMETRICS Performance Evaluation Review. 50(4):8–10, Mar 2023.
- A. Badita, P. Parag, and J.-F. Chamberland. Latency analysis for distributed coded storage systems. IEEE Transactions on Information Theory. 65(8):4683–4698, Aug 2019.