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Fastest adopted apps
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LLM inference server
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Processing pipeline
Output token Y1

Multi layer perceptron (MLP)

Self attention

Tokenization

Input prompt
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Output token Y2

Multi layer perceptron (MLP)

Self attention

Input tokens appended with output token
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Processing pipeline
Output token Y1

Multi layer perceptron (MLP)

Self attention

Tokenization

Input prompt

X1 X2 X3 X4 X5

Z1 Z2 Z3 Z4 Z5

Attention computations
X W Q = Q

X W K = K

X W V = V

▶ Z = softmax(QK⊤)V

MLP computations
▶ Y = MLP(Z )
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Preprocessing prompts
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▶ Prefill: Input tokens are processed in parallel
▶ Number of rows correspond to number of input tokens
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Autoregressive processing
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▶ Repeating computations from the previous round
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Preprocessing with KV cache write
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KV cache
▶ (K ,V ) values stored in KV cache for subsequent decodes

▶ Output Z ≜ softmax
(

QK⊤
√

d

)
V has the same number of rows
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Postprocessing with KV cache read and write

KV cache

Q × K⊤
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= Z

▶ Previously stored K ,V values retrieved for each decode
▶ Output K ,V values appended to previously stored K ,V values in KV cache
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Decode
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▶ Decode: Output tokens are processed sequentially from input tokens
▶ Underutilized compute capacity for each decode
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Continuous batching of decodes

KV cache
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Prefill and Decode times (ShareGPT dataset)

100 200 3000

2

4

6

8

Prefill batch size

A
ve

ra
ge

pr
efi

ll
tim

e

Granite
LLaMA3

Prefill time

100 200 300 4000

0.02

0.04

0.06

0.08

Decode batch size

A
ve

ra
ge

tim
e-

be
tw

ee
n-

to
ke

ns

Granite
LLaMA3

Decode time

Experiment setup: NVIDIA A100 (80GB) GPU, LLaMA and Granite 8GB models, vLLM V0
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Prefill and Decode times
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▶ Each prompt k has Ik input tokens
▶ Time to prefill K prompts is cp + tp

∑K
k=1 Ik

▶ Time to decode a batch of B tokens is cd + tdB
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Prefilling prompts

▶ Time to prefill B prompts is cp + tp
∑B

k=1 Ik
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Decode for prefilled prompts

▶ Time to decode a batch of B tokens is cd + tdB
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Decode for prefilled prompts

▶ Decode finishes for a prompt when the number of output tokens are generated
▶ This reduces the batch size
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Alternating prefill and decode
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Alternating prefill and decode

Default VLLM (v0) policy
▶ The inference engine alternates between prefill and decode phases
▶ Attempt a prefill whenever a prompt completes and there’s a vacancy in the KV cache
▶ Switchover from decode to prefill incurs a fixed overhead

Observation
▶ Frequent prefills lead to larger switching delay and hence smaller throughput
▶ Infrequent prefills lead to smaller batch size and smaller throughput
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Alternating prefill and decode: controlled transition

Cache is full # Departures ≥ K Cache is full # Departures ≥ K

Decode Delay Prefill Decode

Key question
▶ What is the optimal departure threshold for average throughput maximization?
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Analytical modeling and results
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K : departure threshold
cp: scheduling overhead
tp: i/p processing time
cd : o/p token compute
td : memory slowdown
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Experimental validation
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Figure: Performance metrics for different models with the ShareGPT dataset.
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Conclusion

▶ Departure threshold-based scheduling algorithm.
▶ Analytical model for inference system, deduced closed form expression for

throughput.
▶ Proved existence of optimal departure threshold that maximizes the system

throughput.
▶ Characterization of LLM inference system to find the analytical model parameters.
▶ Experimental validation with vLLM inference server and NVIDIA A100 GPU.
▶ Key outcome: Proposed policy leads to 13% improvement in average throughput

accompanied by 14% reduction in average prompt completion time.
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