
1/ 24

LLM Inference Optimization

Moonmoon Mohanty, Gautham Bolar, Prachi Rawat, Preetam Patil, Parimal Parag
UmaMaheswari Devi, Felix George, Pratibha Moogi

Technical University of Munich, Nov 26, 2025

Indian Institute of Science
IBM Research India

2/ 24

Acknowledgements

3/ 24

Fastest adopted apps

Thr
ea

ds

Dee
pS

ee
k

Cha
tG

PT

TikT
ok

W
eC

ha
t

Ins
tag

ra
m

W
ha

tsA
pp

Yo
uT

ub
e

Ube
r

0

10

20

30

40

50

60

70

0.17 0.23 2

9
14

30

42

49

70
Ti

m
e

to
re

ac
h

10
0M

us
er

s
(m

on
th

s)

4/ 24

LLM inference server

Input
prompt Tokenization

VLLM engine core

KV Cache

Model executor

Waiting Queue

Running Queue

Scheduler

KV Cache manager

De-tokenization
Output
prompt

5/ 24

Processing pipeline
Output token Y1

Multi layer perceptron (MLP)

Self attention

Tokenization

Input prompt

X1 X2 X3 X4 X5

Z1 Z2 Z3 Z4 Z5

Output token Y2

Multi layer perceptron (MLP)

Self attention

Input tokens appended with output token

X1 X2 X3 X4 X5 Y1

Z1 Z2 Z3 Z4 Z5 Z6

6/ 24

Processing pipeline
Output token Y1

Multi layer perceptron (MLP)

Self attention

Tokenization

Input prompt

X1 X2 X3 X4 X5

Z1 Z2 Z3 Z4 Z5

Attention computations
X W Q = Q

X W K = K

X W V = V

▶ Z = softmax(QK⊤)V

MLP computations
▶ Y = MLP(Z)

7/ 24

Preprocessing prompts

X

X

X

W Q = Q

W K = K

W V = V

▶ Prefill: Input tokens are processed in parallel
▶ Number of rows correspond to number of input tokens

8/ 24

Autoregressive processing

X
Y W Q =

Q

YW Q

X
Y

W K =
K

YW K

X
Y

W V =
V

YW V

▶ Repeating computations from the previous round

9/ 24

Preprocessing with KV cache write

Q1

Q2

Q3

× K⊤
1 K⊤

2 K⊤
3 ×

V1

V2

V3

=

Z1

Z2

Z3

KV cache
▶ (K ,V) values stored in KV cache for subsequent decodes

▶ Output Z ≜ softmax
(

QK⊤
√

d

)
V has the same number of rows

10/ 24

Postprocessing with KV cache read and write

KV cache

Q × K⊤
1 K⊤

2 K⊤
3 K⊤

4 ×

V1

V2

V3

V4

= Z

▶ Previously stored K ,V values retrieved for each decode
▶ Output K ,V values appended to previously stored K ,V values in KV cache

11/ 24

Decode

Y

Y

Y

W Q = Q

W K = K

W V = V

▶ Decode: Output tokens are processed sequentially from input tokens
▶ Underutilized compute capacity for each decode

12/ 24

Continuous batching of decodes

KV cache

Q1

Q2
×

K⊤
11 K⊤

12 K⊤
13 K⊤

4

K⊤
21 K⊤

22 K⊤
23 K⊤

24

×

V11 V21

V12 V22

V13 V23

V14 V24

=
Z1

Z2

13/ 24

Prefill and Decode times (ShareGPT dataset)

100 200 3000

2

4

6

8

Prefill batch size

A
ve

ra
ge

pr
efi

ll
tim

e

Granite
LLaMA3

Prefill time

100 200 300 4000

0.02

0.04

0.06

0.08

Decode batch size

A
ve

ra
ge

tim
e-

be
tw

ee
n-

to
ke

ns

Granite
LLaMA3

Decode time

Experiment setup: NVIDIA A100 (80GB) GPU, LLaMA and Granite 8GB models, vLLM V0

14/ 24

Prefill and Decode times

100 200 3000

2

4

6

8

Prefill batch size

A
ve

ra
ge

pr
efi

ll
tim

e
Granite
LLaMA3

100 200 300 4000

0.02

0.04

0.06

0.08

Decode batch size

A
ve

ra
ge

tim
e-

be
tw

ee
n-

to
ke

ns

Granite
LLaMA3

▶ Each prompt k has Ik input tokens
▶ Time to prefill K prompts is cp + tp

∑K
k=1 Ik

▶ Time to decode a batch of B tokens is cd + tdB

15/ 24

Prefilling prompts

▶ Time to prefill B prompts is cp + tp
∑B

k=1 Ik

16/ 24

Decode for prefilled prompts

▶ Time to decode a batch of B tokens is cd + tdB

17/ 24

Decode for prefilled prompts

▶ Decode finishes for a prompt when the number of output tokens are generated
▶ This reduces the batch size

18/ 24

Alternating prefill and decode

PrefillPrompt 1

PrefillPrompt 2

PrefillPrompt 3

PrefillPrompt 4

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Delay

Delay

Delay

Delay

Pause

Pause

Pause

Prefill

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Decode

tp(C − Xt)cd + td(Xt) cp

Time

19/ 24

Alternating prefill and decode

Default VLLM (v0) policy
▶ The inference engine alternates between prefill and decode phases
▶ Attempt a prefill whenever a prompt completes and there’s a vacancy in the KV cache
▶ Switchover from decode to prefill incurs a fixed overhead

Observation
▶ Frequent prefills lead to larger switching delay and hence smaller throughput
▶ Infrequent prefills lead to smaller batch size and smaller throughput

20/ 24

Alternating prefill and decode: controlled transition

Cache is full # Departures ≥ K Cache is full # Departures ≥ K

Decode Delay Prefill Decode

Key question
▶ What is the optimal departure threshold for average throughput maximization?

21/ 24

Analytical modeling and results

Inference Server

Backlogged queue

input tokens

d0

#output tokens

Geo(α)

M
ax

ba
tc

h
si

ze
C

KV Cache

Figure: Timeline

ρ(K)−1 ≈ 1
K

(
cp + cd

ln(1 − K
C)

ln(1 − α)

)
+

td
α

+
tpd0

N

K : departure threshold
cp: scheduling overhead
tp: i/p processing time
cd : o/p token compute
td : memory slowdown

22/ 24

Experimental validation

50 100 150 200 250 3000

5

10

15

Departure threshold K

A
vg

th
ro

ug
hp

ut

Experiment
Simulation
Theoretical

Granite

100 200 300 4000

5

10

15

20

Departure threshold K

A
vg

th
ro

ug
hp

ut

Experiment
Simulation
Theoretical

Llama

Figure: Performance metrics for different models with the ShareGPT dataset.

23/ 24

Conclusion

▶ Departure threshold-based scheduling algorithm.
▶ Analytical model for inference system, deduced closed form expression for

throughput.
▶ Proved existence of optimal departure threshold that maximizes the system

throughput.
▶ Characterization of LLM inference system to find the analytical model parameters.
▶ Experimental validation with vLLM inference server and NVIDIA A100 GPU.
▶ Key outcome: Proposed policy leads to 13% improvement in average throughput

accompanied by 14% reduction in average prompt completion time.

	Deferred prefill for throughput optimization (EuroMLSys'25)

