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Fastest adopted apps
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LLM inference server
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Processing pipeline

Output token Y;
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Tokenization

Input prompt
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C Self attention
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Input tokens appended with output token

5/24



Processing pipeline
Output token Y;

Attention computations
C Multi layer perceptron (MLP) ) X we l =1
4| L | L 4| D X wk | = | K
C Self attention ) % wv | =1 v
Xi| Xe | Xa | X | X » Z = softmax(QK ")V
C Tokenization ) MLP computations
> Y =MLP(Z)

Input prompt
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Preprocessing prompts

X L s = Q
X e = 77'77
X IVA Vv =

» Prefill: Input tokens are processed in parallel
» Number of rows correspond to number of input tokens
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Autoregressive processing
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» Repeating computations from the previous round



Preprocessing with KV cache write

Q v
Q | x| KT KI KT | x| Vo
Qs Vs

» (K, V) values stored in KV cache for subsequent decodes

» Output Z 2 softmax( NG ) V has the same number of rows
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Postprocessing with KV cache read and write

Vs

> Previously stored K, V values retrieved for each decode
» Output K, V values appended to previously stored K, V values in KV cache
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Decode
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» Decode: Output tokens are processed sequentially from input tokens
» Underutilized compute capacity for each decode
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Continuous batching of decodes




Prefill and Decode times (ShareGPT dataset)
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Experiment setup: NVIDIA A100 (80GB) GPU, LLaMA and Granite 8GB models, vLLM VO
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Prefill and Decode times
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» Each prompt k has I input tokens
> Time to prefill K prompts is ¢, + t, S-k_; I
» Time to decode a batch of B tokens is ¢4 + (4B
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Prefilling prompts

» Time to prefill B prompts is ¢, + t, >0 _, Ik
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Decode for prefilled prompts

» Time to decode a batch of B tokens is ¢4 + 4B
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Decode for prefilled prompts

» Decode finishes for a prompt when the number of output tokens are generated
» This reduces the batch size
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Alternating prefill and decode
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Alternating prefill and decode

Default VLLM (vO0) policy

» The inference engine alternates between prefill and decode phases
> Attempt a prefill whenever a prompt completes and there’s a vacancy in the KV cache
» Switchover from decode to prefill incurs a fixed overhead

Observation
» Frequent prefills lead to larger switching delay and hence smaller throughput
» Infrequent prefills lead to smaller batch size and smaller throughput
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Alternating prefill and decode: controlled transition

Cache is full  # Departures > K Cache is full  # Departures > K
[ [ [
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Key question

» What is the optimal departure threshold for average throughput maximization?
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Analytical modeling and results
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Figure: Timeline

K: departure threshold
Cp: scheduling overhead
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Experimental validation

Avg throughput
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Figure: Performance metrics for different models with the ShareGPT dataset.
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Conclusion

v

Departure threshold-based scheduling algorithm.

Analytical model for inference system, deduced closed form expression for
throughput.

Proved existence of optimal departure threshold that maximizes the system
throughput.

Characterization of LLM inference system to find the analytical model parameters.
Experimental validation with vLLM inference server and NVIDIA A100 GPU.

Key outcome: Proposed policy leads to 13% improvement in average throughput
accompanied by 14% reduction in average prompt completion time.
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	Deferred prefill for throughput optimization (EuroMLSys'25)

