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Problem setup
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Questions
Objective: Maximize revenue

▶ Routing: How to route arriving tasks?

▶ Pricing: How to price the service?



6/ 1

State-of-the-art

Revenue maximizing dynamic pricing

▶ For a single server queue
▶ Random valuation: [Naor, 1969] 1, [Borgs et al, 2011] 2

▶ Arbitrary valuation: [Ashok et al, 2023], 3

▶ Multiple servers with no queues and random valuation
▶ Centralized routing and pricing:[Ashok et al, 2022] 4

▶ Our work: power-of-2 routing and rational pricing

1
P. Naor, “The regulation of queue size by levying tolls,” Econometrica, vol. 37, no. 1, pp. 15–24, Jan. 1969.

2
C. Borgs et al, “The optimal admission threshold in observable queues with state dependent pricing,”

Probability in the Engineering and Informational Sciences, vol. 28, no. 1, p. 101–119, 2014.
3
Ashok et al., “Optimal pricing in a single server system,” ACM Trans. Model. Perform. Eval. Comput.

Syst., vol. 8, no. 4, pp. 1–32, Dec. 2023.
4
Ashok et al, “Optimal pricing in multi server systems,” Performance Evaluation, vol. 154, p. 102282, 2022.
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System model
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N-server loss system

▶ Random i.i.d. unit mean exponential service times

▶ Poisson arrivals of rate Nλ

▶ Server n is busy or idle denoted Xn(t)

▶ Random i.i.d. valuation with distribution G for each task
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Deterministic routing D1
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Join an empty server

▶ Requires state information from all servers

▶ Loss only when all servers are busy

▶ Revenue if price less than valuation



9/ 1

Random routing R1
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Join a random server
▶ Requires no server state feedback

▶ Loss when a busy server is selected

▶ No revenue can be generated
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Power-of-two routing R2
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Join one of two randomly selected servers

▶ Requires server state feedback from two servers at each arrival

▶ Loss when both busy servers are selected

▶ No revenue if both servers are busy
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Pricing
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Centralized and deterministic
▶ Centrally decided for all the servers

▶ Decided by individual servers

▶ Deterministic versus random
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Centralized pricing for deterministic routing
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D1C: State dependent pricing

▶ Revenue maximizing price given # busy servers 5

▶ For large N state independent pricing maximizes revenue

▶ For price P at all servers, effective arrival rate NλḠ (P)

▶ For uniform pricing revenue rate per server is λPḠ (P)

5
Ashok et al., “Optimal pricing in multi server systems,” Performance Evaluation, vol. 154, p. 102282, 2022.
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Decentralized pricing for power-of-2 routing
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R2G: Mean-field game

▶ Task joins the idle server with lower price if lower than value

▶ Each server picks its own price based on the empirical average
of busy servers
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Problem Statement
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R2G: Mean-field game

▶ Is there mean-field game equilibrium for this problem?

▶ Find the revenue rate under the mean-field game equilibrium
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Ride sharing and on demand services

▶ Ride-hailing platforms like Uber and Lyft use dynamic pricing
to match drivers with riders based on demand

▶ The two-server matching principle is similar to two drivers
competing for a ride based on price and availability.
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Online Cloud Marketplaces
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▶ Google cloud and AWS marketplace allow independent cloud
service providers to list their services

▶ Multiple providers compete for customer jobs, similar to the
two-server price competition model
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Online stock marketing
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▶ Each conglomerate has a list of stocks whose prices vary

▶ We assume that these variations follow a specific distribution
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Deterministic routing D1
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Number of busy servers
∑N

n=1 Xn(t)

▶ Evolve as a continuous time Markov chain with

Qx ,x−1 = x , Qx ,x+1 = Nλ
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Deterministic routing D1
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Fraction of busy servers Z (t) ≜ 1
N

∑N
n=1 Xn(t)

▶ Evolve as a continuous time Markov chain with

Qz,z− 1
N
= Nz , Qz,z+ 1

N
= Nλ

▶ Mean rate of change of fraction of busy servers is

f (z) ≜
∑
w

Qz,w (w − z) = λ− z

▶ Mean-field limit dz
dt ≈ f (z) = λ− z

▶ If λ < 1, then stationary fraction z∗ = λ
▶ If λ > 1, then stationary fraction z∗ = 1
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Centralized pricing for deterministic routing
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D1C and uniform pricing

▶ Effective arrival rate λḠ (P) for common price P

▶ If λḠ (P) < 1, then revenue rate is λPḠ (P)

▶ If λḠ (P) > 1, then revenue rate is P maximized at Ḡ−1(1/λ)
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Random routing R1
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Number of busy servers

▶ Each server evolves independently as a continuous time
Markov chain with

Q1,0 = 1, Q0,1 = λ
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Random routing R1
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Fraction of busy servers

▶ Evolve as a continuous time Markov chain with

Qz,z− 1
N
= Nz , Qz,z+ 1

N
= Nλ(1− z)

▶ Mean rate of change of fraction of busy servers is

f (z) ≜
∑
w

Qz,w (w − z) = λ(1− z)− z

▶ Mean-field limit dz
dt ≈ f (z) = λ(1− z)− z

▶ Stationary fraction z∗ = λ
1+λ
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Centralized pricing for random routing
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R1C and uniform pricing

▶ Effective arrival rate λḠ (P) for common price P

▶ Stationary fraction z∗ = λḠ(P)

1+λḠ(P)

▶ Revenue rate is λ(1− z∗)PḠ (P)
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Power of two routing R2
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Fraction of busy servers

▶ Evolve as a continuous time Markov chain with

Qz,z− 1
N
= Nz , Qz,z+ 1

N
= Nλ(1− z2)

▶ Mean rate of change of fraction of busy servers is

f (z) ≜
∑
w

Qz,w (w − z) = λ(1− z2)− z

▶ Mean-field limit dz
dt ≈ f (z) = λ(1− z2)− z

▶ Stationary fraction z∗ = − 1
2λ +

√
1 + 1

4λ2
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Centralized pricing for power of two routing
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R2C and uniform pricing

▶ Effective arrival rate λḠ (P) for common price P

▶ Stationary fraction z∗ = − 1
2λḠ(P)

+
√
1 + 1

4λ2Ḡ(P)2

▶ Revenue rate is λ(1− z∗2)PḠ (P)
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Mean-field game

Approach

▶ Valuation distribution is exponential with rate v

▶ Servers in [N] follow same pricing, i.i.d. exponential price with
rate d1

▶ Fraction of busy servers ZN
t ≜ 1

N

∑N
n=1 Xt,n

▶ Find mean-field limit z∗(d1) = limN→∞ limt→∞ ZN
t of the

fraction of busy servers

▶ Tag server 0 that has exponential price with rate d0
▶ Find revenue rate of server 0 given d1
▶ Choose best response rate d∗

0 (d1) that maximizes revenue rate
of server 0

▶ Is there a mean field game equilibrium?

▶ What is the per server revenue rate at this equilibrium?
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System evolution

Admission indicators

▶ For kth arrival: task valuation Vk , price Pk,n at server n

▶ Admission indicators

ηk,10 ≜ 1{Vk>Pk,0}, ηk,20 ≜ 1{Vk>Pk,0,Pk,0<Pk,n},

ζk,1 ≜ 1{Vk>Pk,n}, ζk,2 ≜ 1{Vk>Pk,n∧Pk,m}.

▶ Admission probabilities

q1 ≜ Eηk,10, q20 ≜ Eηk,20, p1 ≜ Eζk,1, p2 ≜ Eζk,2.

Evolution
Selection indicator for tagged server 0 by the kth task

ξNk = 1{0∈Ik}X̄Ak ,0

N∑
n=1

1{n∈Ik}

(
XAk ,nηk,10 + X̄Ak ,nηk,20

)
.



28/ 1

System evolution
Generator matrix
The process (Xt,0,Z

N
t ) is a CTMC with the generator matrix QN defined as

QN
(x,z),(y,w) =


Nz , w = z − 1

N
, y = x

λz̄(2p1(x + Nz) + 2x̄q21 + p2(Nz̄ − 1)), w = z + 1
N
, y = x

x , w = z , y = x − 1,

2λx̄(zq1 + z̄q20), w = z , y = x + 1.

Mckean-Vlasov equation
Consider an autonomous dynamic system ż = h(z), where

h(z) ≜ lim
N→∞

∑
y,w

QN
(x,z),(y,w)(w − z) = λz̄(2zp1 + z̄p2)− z .

Limiting fraction of busy servers
Let α ≜ v

d1
and x ≜ 1

2

(
α+ (1+α)(2+α)

2λ

)
, then the unique rest point z∗ such

that h(z∗) = 0 is

z∗ ≜ −x +
√

1 + α+ x2.
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Our Contributions

▶ Calculated the deterministic occupancy z∗ of the sub-system
using Mckean-Vlasov equation

▶ Derived the tagged server’s limiting revenue expression as a
function of z∗, price and value rates

▶ Designed an algorithm that plays a game between the agents
to choose the optimum price parameter which maximizes their
revenue

▶ Derived the numerical results for mean price, limiting revenue
and throughput of ours’ as well as the state-of-art techniques
and compared them
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Mean-field convergence

Mean-field convergence

The stationary fraction of busy servers ZN
∞ converges in the

mean-square sense to unique rest point z∗ of mean-field model

with rate 1
N . That is, limN→∞ limt→∞ E

∣∣ZN
t − z∗

∣∣2 = O
(

1
N

)
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Tagged server revenue

Limiting revenue rate at tagged server 0
R̄ ≜ limN→∞ limK→∞

1
AK

∑K
k=0 Pk,0ξ

N
k =

z∗q2
1+(1−z∗)q2

20

d0(
1
2λ+z∗q1+(1−z∗)q20)
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▶ We can show d0 7→ z∗ 7→ d∗
0 is composition of continuous maps

▶ There exists a fixed-point which is the mean-field game equilibrium
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Performance comparison

Mean revenue rate
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▶ D1C has the best revenue rate at the cost of highest server
feedback

▶ R2G has same performance as R2C without coordinated
pricing

▶ R1C has the worst performance since it is completely agnostic
of system state
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