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Motivation

Source - The Hindu

Sensor Center

Timely Updates are critical.

Age of Information1 - metric to capture timeliness.

1Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking
in vehicular networks. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE (pp. 1-5). IEEE. 1



Age of Information (AOI) - Metric for Timeliness

I AOI: Time lag between the latest information at the RX w.r.t.
that at TX.

Sensor Center

Xt XU(t)

A(t) = t− U(t).

I We are interested in minimizing the average age

Ā , lim sup
T→∞

1

T

T∑
t=1

A(t).

I We restrict to Memoryless Update Schemes.
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Ā , lim sup
T→∞

1

T

T∑
t=1

A(t).

I We restrict to Memoryless Update Schemes.

2



Age of Information (AOI) - Metric for Timeliness

I AOI: Time lag between the latest information at the RX w.r.t.
that at TX.

Sensor CenterXt

XU(t)

A(t) = t− U(t).

I We are interested in minimizing the average age
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Memoryless Update Schemes
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iid P

Encoder
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1 Bit/Time slot
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T
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Illustration of Instantaneous Age

Source Encoder Channel Decoder

T
im
e

X1 e(X1)

X2

X3 e(X3) X1

X4 X3e(X4)

X5 X3

X6 X3

A(t) = t− U(t)

U(t) = Index of latest information at the decoder

0

1+

2

A(t)

+

3+

4+

1 2 3 4
t

5 6
+ + + + +
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Characterization of Average Age

Ā(e) , lim sup
T→∞

1

T

T∑
t=1

A(t)

`(x) , code-length for a symbol x, L , `(X).

Theorem

For a pre�x-free code e, Ā(e) = E [L] +
E[L2]
2E[L] −

1
2 a.s..
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Ā(e) , lim sup
T→∞

1

T

T∑
t=1

A(t)

`(x) , code-length for a symbol x, L , `(X).

Theorem

For a pre�x-free code e, Ā(e) = E [L] +
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T
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`(x) , code-length for a symbol x, L , `(X).

Theorem

For a pre�x-free code e, Ā(e) = E [L] +
E[L2]
2E[L] −

1
2 a.s..

Which source coding scheme is optimal?

Are Shannon Codes Optimal?
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Shannon codes can be far from optimal

Shannon code for P : `(x) = d− logP (x)e ∀x

Example: Consider X = {0, ..., 2n} and a pmf P on X given by

P (x) =

{
1− 1

n , x = 0
1
n2n , x ∈ {1, . . . , 2n}.

Shannon codes for P have an average age of Ω(log |X |).

Instead, use Shannon codes for pmf P ′(x), where

P ′(x) =

{
1

2
√
n , x = 0

1−2−
√
n

2n , x ∈ {1, . . . , 2n}.

Shannon codes for P ′ have an average age of O(
√

log |X |).

Shannon codes are order-wise suboptimal!
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Our Approach
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Reduction to a simpler problem

Need to solve IP;

minE [L] +
E
[
L2
]

2E [L]

s.t. ` ∈ Z|X |+ ,∑
x∈X

2−`(x) ≤ 1

Instead solve RP;

minE [L] +
E
[
L2
]

2E [L]

s.t. ` ∈ R|X |+ ,∑
x∈X

2−`(x) ≤ 1

and use `(x) = d`∗(x)e ∀x ∈ X

Proposition

Cost using this approach will be atmost 2.5 bits away from the
optimal cost.
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Structural Result for RP

Real valued Shannon lengths for P : `(x) = − logP (x) ∀x

Main Theorem

Optimal solution for RP is unique and is given by

`∗(x) = − logP ∗(x) ∀x ∈ X ,

where P ∗ is a tilting of source distribution P .

P ∗ can be found by an Entropy Maximization procedure.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4
P
P ∗
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Proof sketch of Main theorem

I Main step: Linearizing the Average Age Cost

E [L] +
E
[
L2
]

2E [L]
= max

y∈Y

∑
x∈X

g(y, x)`(x)

I The wrap-up

1. Minimax claim

∆∗ = min
`∈Λ

max
y∈Y

∑
x∈X

g(y, x)`(x) = max
y∈Y,

g(y,·)≥0

2.

3. Use Entropy Maximization to �nd the least-favorable y

∆∗ = max
y∈Y,

g(y,·)≥0

∑
x∈X

g(y, x) log

∑
x∈X g(y, x)

g(y, x)

Minimizing lengths for the least-favorable y are optimal
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3. Use Entropy Maximization to �nd the least-favorable y

∆∗ = max
y∈Y,

g(y,·)≥0

∑
x∈X

g(y, x) log

∑
x∈X g(y, x)

g(y, x)

Minimizing lengths for the least-favorable y are optimal
10



Main Step: Linearizing the Average Age Cost

I Linearizing the rational form (easy):

E [L] +
E
[
L2
]

2E [L]
= max

z≥0

(
1− z2

2

)
E [L] + z

√
E [L2]

I Linearizing the 2-norm term?

A new variational formula for 2-norm of a random variable

√
E [L2] = max

Q�P

∑
x∈X

√
Q(x)P (x)`(x)

E [L] +
E
[
L2
]

2E [L]
= max

z≥0, Q�P

(
1− z2

2

)
E [L] + z

∑
x∈X

√
Q(x)P (x)`(x)

11



Main Step: Linearizing the Average Age Cost

I Linearizing the rational form (easy):

E [L] +
E
[
L2
]

2E [L]
= max

z≥0

(
1− z2

2

)
E [L] + z

√
E [L2]

I Linearizing the 2-norm term?

A new variational formula for 2-norm of a random variable

√
E [L2] = max

Q�P

∑
x∈X

√
Q(x)P (x)`(x)

E [L] +
E
[
L2
]

2E [L]
= max

z≥0, Q�P

(
1− z2

2

)
E [L] + z

∑
x∈X

√
Q(x)P (x)`(x)

11



Main Step: Linearizing the Average Age Cost

I Linearizing the rational form (easy):

E [L] +
E
[
L2
]

2E [L]
= max

z≥0

(
1− z2

2

)
E [L] + z

√
E [L2]

I Linearizing the 2-norm term?
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‖X‖p = max
Q�P

E

[(
dQ

dP

) p−1
p

|X|

]
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Simulation Results

Zipf(s,N) is given by P (i) = i−s∑N
j=1 j

−s , 1 ≤ i ≤ N .
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Shannon codes for P (integer lengths)

Shannon Codes for P∗ (integer lengths)

Shannon Codes for P∗ (real lengths)

Comparison of proposed codes and Shannon codes for Zipf(s, 256) w.r.t. s. 12



A related problem

I How to design source-codes for Minimum Queuing Delay?2

I Cost Function: D̄(e) =

E [L] +
λE[L2]

2(1−λE[L]) , λE [L] < 1,

∞, λE [L] ≥ 1.

I Observation in Humblet (1978):

Codes which minimize the �rst moment are "robust".

I We formally prove this empirical observation using our recipe.

Structural solution for the relaxed problem

`∗(x) = − logP ∗(x), where P ∗ satis�es

D(P ||P ∗) ≤ log

(
1 +

1√
2

)
.

2Humblet, P. A. (1978). Source coding for communication concentrators. 13
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In summary ...

I New variational formula for pth norm of random variable

I Recipe for minimizing average age based on Entropy
Maximization

I General Recipe: can be used to optimize other non-linear costs

14
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Similar Cost Function

Minimum Delay Problem3 Minimum Age Problem

D̄(e) =

{
E [L] +

λE[L2]
2(1−λE[L])

, λE [L] < 1,

∞, λE [L] ≥ 1.
Ā(e) = E [L] +

E
[
L2
]

2E [L]
− 1

2

Convex Hull Algorithm4

1 2 3 4 5

4

8

12

E [L]

E
[ L2]

3Humblet, P. A. (1978). Source coding for communication concentrators.
4Larmore, L. L. (1989). Minimum delay codes. SIAM Journal on

Computing, 18(1), 82-94. 1



Performance of Shannon Codes

Shannon code for P : `(x) = d− logP (x)e ∀x.

Lemma

Given a pmf P on X , a Shannon code e for P has average age at

most O(log |X |).

2
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