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Age of Information! - metric to capture timeliness.

'Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking
in vehicular networks. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE (pp. 1-5). IEEE.
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» We restrict to Memoryless Update Schemes.
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lllustration of Instantaneous Age
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Aty =t —U(t)

U(t) — Index of latest information at the decoder
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Which source coding scheme is optimal?

Are Shannon Codes Optimal?
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Example: Consider X = {0,...,2"} and a pmf P on X given by

1-41 z=0
P(x):{ 1 "

o 1’6{1,,2”}

Shannon codes for P have an average age of Q(log |X]).

Instead, use Shannon codes for pmf P’(z), where

1
— z=0
Pl(z)=42"" _
=) {1—;”, ze{l,... 2"}

Shannon codes for P’ have an average age of O(y/log |X]).

Shannon codes are order-wise suboptimal!
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Need to solve IP; Instead solve RP;
minE [L] + E L] minE [L] + E |17
2R [L] 2E [L]
st. le Z‘f', st. (€ R‘f',
Z 9—l=) < 1 Z 2—x) < 1
zeX TeX

and use {(x) = [(*(x)] Vre X

Cost using this approach will be atmost 2.5 bits away from the
optimal cost.
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Structural Result for RP

Real valued Shannon lengths for P: ¢(x) = —log P(z) Vz

Optimal solution for RP is unique and is given by

0*(x) = —log P*(z) VreX,

where P* is a tilting of source distribution P.
P* can be found by an Entropy Maximization procedure.

0.4 i !

B P

0.3 g p
0.2
0.1
0




Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

E[L]+ =max » g(y,z)l(x)

10



Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

E[L]+ =max » g(y,z)l(x)

» The wrap-up

1. Minimax claim

10



Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

E[L]+ =max » g(y,z)l(x)

» The wrap-up

1. Minimax claim

10



Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

E[L]+ =max » g(y,z)l(x)

» The wrap-up
1. Minimax claim

A* = mi o(z) = i L)l
minmax » gy, x)0(x) = max min »  g(y,z){(z)
zeX g(y,)>0 reX

10



Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

E[L]+ =max » g(y,z)l(x)

» The wrap-up
1. Minimax claim

A* = mi U(z) = i (
minmax » gy, x)0(x) = max min »  g(y,x)((z)
zeX g(y,)>0 reX

2. Inner min is attained by ¢'(z) = —log P'(z) for P'(z) x g(y,x)

10



Proof sketch of Main theorem

» Main step: Linearizing the Average Age Cost

» The wrap-up
1. Minimax claim

A* = mi o(z) = i l
minmax » gy, x)0(x) = max min »  g(y,z){(z)
zeX g(y,)>0 reX

2. Inner min is attained by ¢'(z) = —log P’(z) for P'(z) x g(y,x)

3. Use Entropy Maximization to find the least-favorable y

T
A* = max Z 9(y, x logizxexg(y )

LY dex 9(y,x)

10
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» Main step: Linearizing the Average Age Cost

» The wrap-up
1. Minimax claim

A* = mi o(z) = i l
minmax » gy, x)0(x) = max min »  g(y,z){(z)
zeX g(y,)>0 reX

2. Inner min is attained by ¢'(z) = —log P’(z) for P'(z) x g(y,x)

3. Use Entropy Maximization to find the least-favorable y

T
A* = max Z 9(y, x logizxexg(y )

LY dex 9(y,x)

Minimizing lengths for the least-favorable y are optimal 10
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Main Step: Linearizing the Average Age Cost

» Linearizing the rational form (easy):

E[L] + ISE[?L] = max (1 - “22> E[L] + 2/E [L2]

| =>0

» Linearizing the 2-norm term?

2 2
E[L] + ISIéI[JL} = max <1 - 2) E[L] + ZZ VQ(z)P(z)l(x)
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Simulation Results

Zipf(s, N) is given by P(i) = =3

12.5 w

s 1Si< N
j=1

10 - S

7.5

Average-age
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O |

T T T

—@— Shannon codes for P (integer lengths)
—+— Shannon Codes for P* (integer lengths)
- <+ - Shannon Codes for P* (real lengths)

0 1

Comparison of proposed codes

and Shannon codes for Zipf (s, 256) w.r.t. s.
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» How to design source-codes for Minimum Queuing Delay??

A\E| L2
E[L]+ godilo, AE[L] <1,

» Cost Function: D(e) =
00, AE[L] > 1.

» Observation in Humblet (1978):

Codes which minimize the first moment are "robust".

» We formally prove this empirical observation using our recipe.

Structural solution for the relaxed problem

0*(z) = —log P*(x), where P* satisfies

D(P||P*) < log <1+ %) .

2Humblet, P. A. (1978). Source coding for communication concentrators. 13



In summary ...

» New variational formula for p** norm of random variable

» Recipe for minimizing average age based on Entropy
Maximization

» General Recipe: can be used to optimize other non-linear costs

14
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Similar Cost Function

Minimum Delay Problem3

D(e) = {E[L] * #IF[]L])’ AE[L] <1,

Minimum Age Problem

Ale)
0, AE[L] > 1.
Convex Hull Algorithm*
12
S0 AN
1 2 4
E[L]

3Humblet, P. A. (1978). Source coding for communication concentrators.
*Larmore, L. L. (1989). Minimum delay codes. SIAM Journal on

Computing, 18(1), 82-94.



Performance of Shannon Codes

Shannon code for P: {(z) = [—log P(z)] V.

Given a pmf P on X, a Shannon code e for P has average age at
most O(log |X]).
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