Optimal Lossless Source Codes for Timely Updates

Prathamesh Mayekar

Joint work with Parimal Parag and Himanshu Tyagi

> Department of ECE, Indian Institute of Science

Source - The Hindu

Source - The Hindu

Timely Updates are critical.

Source - The Hindu

Timely Updates are critical.

Age of $Information^1$ - metric to capture timeliness.

¹Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking in vehicular networks. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (pp. 1-5). IEEE.

A(t) = t - U(t).

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

A(t) = t - U(t).

We are interested in minimizing the average age

$$\bar{A} \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t).$$

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

A(t) = t - U(t).

We are interested in minimizing the average age

$$\bar{A} \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t).$$

We restrict to Memoryless Update Schemes.

Illustration of Instantaneous Age

$$A(t) = t - U(t)$$

 $U(t) = {
m Index \ of \ latest \ information \ at \ the \ decoder}$

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x, \ L \triangleq \ell(X).$

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

- 7

 $\ell(x) \triangleq \text{code-length for a symbol } x, \ L \triangleq \ell(X).$

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]} - \frac{1}{2}$ a.s..

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

•
$$S_i \triangleq i^{th}$$
 reception
 $(S_{i+1} - S_i)_{i \in \mathbb{N}}$ is iid

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

• $S_i \triangleq i^{th}$ reception $(S_{i+1} - S_i)_{i \in \mathbb{N}}$ is *iid* • $(R_{2i+1})_{i \in \mathbb{N}}$ is *iid*, $(R_{2i+2})_{i \in \mathbb{N}}$ is *iid*

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

- 7

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Which source coding scheme is optimal?

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq \text{code-length for a symbol } x$, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Which source coding scheme is optimal?

Are Shannon Codes Optimal?

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Example: Consider $\mathcal{X} = \{0,...,2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|).$

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\} \end{cases}$$

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P' have an average age of $O(\sqrt{\log |\mathcal{X}|})$.

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x$

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P' have an average age of $O(\sqrt{\log |\mathcal{X}|})$. Shannon codes are order-wise suboptimal!

Our Approach

Need to solve IP;

$$\min \mathbb{E} [L] + \frac{\mathbb{E} [L^2]}{2\mathbb{E} [L]}$$

s.t. $\ell \in \mathbb{Z}_+^{|\mathcal{X}|},$
 $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]}\\ \text{s.t.} \quad \ell \in \mathbb{Z}_+^{|\mathcal{X}|},\\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

Need to solve IP;

Instead solve RP;

$$\min \mathbb{E} [L] + \frac{\mathbb{E} [L^2]}{2\mathbb{E} [L]}$$

s.t. $\ell \in \mathbb{R}^{|\mathcal{X}|}_+,$
 $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]}\\ \text{s.t.} \quad \ell \in \mathbb{Z}_+^{|\mathcal{X}|},\\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

Need to solve IP;

Instead solve RP;

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} \\ \text{s.t.} \quad \ell \in \mathbb{R}_+^{|\mathcal{X}|}, \\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

and use $\ell(x) = \lceil \ell^*(x) \rceil \quad \forall x \in \mathcal{X}$

 $\begin{array}{ll} \text{Need to solve IP;} & \text{Instead solve RP;} \\ \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} & \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} \\ \text{s.t.} \quad \ell \in \mathbb{Z}_+^{|\mathcal{X}|}, & \text{s.t.} \quad \ell \in \mathbb{R}_+^{|\mathcal{X}|}, \\ & \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 & \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{array}$

and use $\ell(x) = \lceil \ell^*(x) \rceil \quad \forall x \in \mathcal{X}$

Proposition

Cost using this approach will be atmost 2.5 bits away from the optimal cost.

Real valued Shannon lengths for $P: \ \ell(x) = -\log P(x) \quad \forall x$

Main Theorem

Optimal solution for RP is unique and is given by

$$\ell^*(x) = -\log P^*(x) \quad \forall x \in \mathcal{X},$$

where P^* is a tilting of source distribution P.

Real valued Shannon lengths for $P: \ \ell(x) = -\log P(x) \quad \forall x$

Main Theorem

Optimal solution for RP is unique and is given by

$$\ell^*(x) = -\log P^*(x) \quad \forall x \in \mathcal{X},$$

where P^* is a tilting of source distribution P. P^* can be found by an Entropy Maximization procedure.

Real valued Shannon lengths for $P: \ \ell(x) = -\log P(x) \quad \forall x$

Main Theorem

Optimal solution for RP is unique and is given by

$$\ell^*(x) = -\log P^*(x) \quad \forall x \in \mathcal{X},$$

where P^{\ast} is a tilting of source distribution P. P^{\ast} can be found by an Entropy Maximization procedure.

Real valued Shannon lengths for $P: \ \ell(x) = -\log P(x) \quad \forall x$

Main Theorem

Optimal solution for RP is unique and is given by

$$\ell^*(x) = -\log P^*(x) \quad \forall x \in \mathcal{X},$$

where P^{\ast} is a tilting of source distribution P. P^{\ast} can be found by an Entropy Maximization procedure.

► Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► The wrap-up

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^{2}\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► The wrap-up

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► The wrap-up

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \geq 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► The wrap-up

1. Minimax claim

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \geq 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

2. Inner min is attained by $\ell'(x) = -\log P'(x)$ for $P'(x) \propto g(y,x)$

Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► The wrap-up

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \geq 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

- 2. Inner \min is attained by $\ell'(x) = -\log P'(x)$ for $P'(x) \propto g(y,x)$
- 3. Use Entropy Maximization to find the least-favorable \boldsymbol{y}

$$\Delta^* = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(y, x) \log \frac{\sum_{x \in \mathcal{X}} g(y, x)}{g(y, x)}$$

Main step: Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► The wrap-up

1. Minimax claim

$$\Delta^* = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \geq 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

- 2. Inner \min is attained by $\ell'(x) = -\log P'(x)$ for $P'(x) \propto g(y,x)$
- 3. Use Entropy Maximization to find the least-favorable y

$$\Delta^* = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(y, x) \log \frac{\sum_{x \in \mathcal{X}} g(y, x)}{g(y, x)}$$

Minimizing lengths for the least-favorable y are optimal

Linearizing the rational form (easy):

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}$$

Linearizing the rational form (easy):

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}$$

Linearizing the 2-norm term?

Linearizing the rational form (easy):

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}$$

Linearizing the 2-norm term?

A new variational formula for *p*-norm of a random variable

$$||X||_p = \max_{Q \ll P} \mathbb{E}\left[\left(\frac{dQ}{dP}\right)^{\frac{p-1}{p}} |X|\right]$$

Linearizing the rational form (easy):

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}$$

Linearizing the 2-norm term?

A new variational formula for 2-norm of a random variable

$$\sqrt{\mathbb{E}\left[L^2\right]} = \max_{Q \ll P} \sum_{x \in \mathcal{X}} \sqrt{Q(x)P(x)}\ell(x)$$

Linearizing the rational form (easy):

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}$$

Linearizing the 2-norm term?

A new variational formula for 2-norm of a random variable

$$\sqrt{\mathbb{E}\left[L^2\right]} = \max_{Q \ll P} \sum_{x \in \mathcal{X}} \sqrt{Q(x)P(x)}\ell(x)$$

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0, \, Q \ll P} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z \sum_{x \in \mathcal{X}} \sqrt{Q(x)P(x)}\ell(x)$$

Simulation Results

$$\operatorname{Zipf}(s,N)$$
 is given by $P(i) = \frac{i^{-s}}{\sum_{j=1}^{N} j^{-s}}, \quad 1 \leq i \leq N.$

Comparison of proposed codes and Shannon codes for $\mathtt{Zipf}(s, 256)$ w.r.t. s.

12

How to design source-codes for Minimum Queuing Delay?²

²Humblet, P. A. (1978). Source coding for communication concentrators. 13

How to design source-codes for Minimum Queuing Delay?²

$$\blacktriangleright \text{ Cost Function: } \bar{D}(e) = \begin{cases} \mathbb{E}\left[L\right] + \frac{\lambda \mathbb{E}[L^2]}{2(1-\lambda \mathbb{E}[L])}, & \lambda \mathbb{E}\left[L\right] < 1, \\ \infty, & \lambda \mathbb{E}\left[L\right] \geq 1. \end{cases}$$

²Humblet, P. A. (1978). Source coding for communication concentrators. 13

How to design source-codes for Minimum Queuing Delay?²

$$\blacktriangleright \text{ Cost Function: } \bar{D}(e) = \begin{cases} \mathbb{E}\left[L\right] + \frac{\lambda \mathbb{E}[L^2]}{2(1-\lambda \mathbb{E}[L])}, & \lambda \mathbb{E}\left[L\right] < 1, \\ \infty, & \lambda \mathbb{E}\left[L\right] \geq 1. \end{cases}$$

 Observation in Humblet (1978): Codes which minimize the first moment are "robust".

²Humblet, P. A. (1978). Source coding for communication concentrators. 13

How to design source-codes for Minimum Queuing Delay?²

► Cost Function:
$$\bar{D}(e) = \begin{cases} \mathbb{E}\left[L\right] + \frac{\lambda \mathbb{E}[L^2]}{2(1-\lambda \mathbb{E}[L])}, & \lambda \mathbb{E}\left[L\right] < 1, \\ \infty, & \lambda \mathbb{E}\left[L\right] \ge 1. \end{cases}$$

 Observation in Humblet (1978): Codes which minimize the first moment are "robust".

▶ We formally prove this empirical observation using our recipe.

Structural solution for the relaxed problem

$$\ell^*(x) = -\log P^*(x)$$
, where P^* satisfies

$$D(P||P^*) \le \log\left(1 + \frac{1}{\sqrt{2}}\right).$$

²Humblet, P. A. (1978). Source coding for communication concentrators. 13

In summary ...

- \blacktriangleright New variational formula for p^{th} norm of random variable
- Recipe for minimizing average age based on Entropy Maximization
- ▶ General Recipe: can be used to optimize other non-linear costs

Backup Slides

Similar Cost Function

Minimum Delay Problem³

Minimum Age Problem

$$\bar{D}(e) = \begin{cases} \mathbb{E}\left[L\right] + \frac{\lambda \mathbb{E}\left[L^{2}\right]}{2(1-\lambda \mathbb{E}\left[L\right])}, & \lambda \mathbb{E}\left[L\right] < 1, \\ \infty, & \lambda \mathbb{E}\left[L\right] \ge 1. \end{cases}$$

$$\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$$

Convex Hull Algorithm⁴

³Humblet, P. A. (1978). Source coding for communication concentrators. ⁴Larmore, L. L. (1989). Minimum delay codes. SIAM Journal on Computing, 18(1), 82-94.

Performance of Shannon Codes

Shannon code for $P: \ell(x) = \left[-\log P(x)\right] \quad \forall x.$

Lemma

Given a pmf P on \mathcal{X} , a Shannon code e for P has average age at most $O(\log |\mathcal{X}|)$.