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Abstract—A transmitter observing a sequence of independent
and identically distributed random variables seeks to keep a
receiver updated about its latest observations. The receiver need
not be apprised about each symbol seen by the transmitter, but
needs to output a symbol at each time instant t. If at time
t the receiver outputs the symbol seen by the transmitter at
time U(t) ≤ t, the age of information at the receiver at time
t is t − U(t). We study the design of lossless source codes that
enable transmission with minimum average age at the receiver.
We show that the asymptotic minimum average age can be
attained (up to a constant bits gap) by Shannon codes for a
tilted version of the original pmf generating the symbols, which
can be computed easily by solving an optimization problem.
Underlying our construction for minimum average age codes
is a new variational formula for integer moments of random
variables, which may be of independent interest.

I. INTRODUCTION

Timeliness is emerging as an important requirement for
communication in cyber-physical systems (CPS). Broadly, it
refers to the requirement of having the latest information from
the transmitter available at the receiver in a timely fashion. It
is important to distinguish the requirement of timeliness from
that of low delay transmission: The latter places a constraint
on the delay in transmission of each message, while timeliness
is concerned about how recent is the current information at the
receiver. In particular, even if a message m is transmitted with
low delay, if the receiver has to wait for subsequent messages,
the information conveyed by message m looses its timeliness.
A heuristically appealing metric that captures timeliness of
information, termed its age, was proposed in [1] (see [2]–[6]
for subsequent developments) for a setting involving queueing
and link layer delays. In this paper, we initiate a systematic
study of the design of lossless source codes with the goal of
minimizing the age of the information at the receiver.

Specifically, we consider the problem of source coding
where a transmitter receives symbols generated from a known
distribution and seeks to communicate them to a receiver in a
timely fashion. To that end, it encodes each symbol x to e(x)
using a variable length prefix-free code e. The coded sequence
is then transmitted over a noiseless communication channel
that sends one bit per unit time. We restrict our treatment
to a simple class of deterministic1 update schemes, termed
memoryless update schemes, where the transmitter cannot
store the symbols it has seen previously and sends the next
observed symbol once the channel is free.
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1Our analysis of average age extends to randomized schemes as well; see
Section VI.
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Fig. 1: An example of the proposed memoryless update
scheme, where the symbol X2 is skipped since the channel was
busy sending X1 when it arrived. Furthermore, the decoder
retains output X3, a symbol which was received within a delay
of 1 time unit, for 3 time slots while X4 was being sent.

On the receiver side, at each instance t the decoder outputs
a time U(t) and the symbol XU(t) seen by the transmitter
at time U(t). Thus, the age of information at the receiver at
time t is given by A(t) = t−U(t). We illustrate the setup in
Figure 1.

Our goal in this paper is to design prefix-free codes for
which the average age of the memoryless scheme above is
minimized, namely codes e which minimize

Ā(e) = lim
T→∞

1

T

T∑
t=1

A(t).

This formulation is apt for the timely update problem where
the transmitter need not send each update and strives only to
reduce the average age of the information at the receiver.

Using the renewal reward theorem, we derive a closed form
formula for the asymptotic average age attained by a prefix-
free code. Interestingly, this formula is a rational function of
the first and the second moment of the random codeword
length. Our main contribution in this paper is a variational
formula for the second moment of random variables that
enables an algorithm for finding the code that attains the
minimum asymptotic average age up to a constant gap. The
variational formula is of independent interest and may be
useful in other settings where such cost functions arise; we
point-out one such setting in the final section. In fact, our
prescribed prefix-free code is a Shannon code for a tilted
version of the original pmf which can be computed by solving
a simple optimization problem.

The aforementioned formula for average age implies an
O(log |X |) upper bound on the minimum average age, attained



by a fixed length code. We show that the same upper bound
of O(log |X |) holds for the average age of a Shannon code
for the original distribution as well. However, we exhibit an
example where Shannon codes for the original distribution
have Ω(log |X |) age, while our proposed scheme yields an
average age of O(

√
log |X |).

Note that the problem of designing update codes with low
average age is related to real-time source coding (cf. [7])
where we seek to transmit a stream of data under strict delay
bounds. A related formulation has also emerged in the control
over communication network literature (cf. [8]) where an
observation is quantized and sent to an estimator/controller to
enable control. Here, too, the requirement is that of communi-
cation under bounded delay. Our proposed minimum average
age problem differs from both these formulations since we
need not send the entire stream and are allowed to skip
some symbols. In our applications of interest, the allowed
communication rates are much lower than the rate at which
data is generated, and there is no hope of transmitting all
the data at bounded delay, as mandated by the formulations
available hitherto.

The next section contains a formal description of our
setting and a formula for asymptotic average age of a code.
Our main technical tool is presented in Section III, and we
apply it to the minimum average age code design problem
in Section IV. Numerical evaluations of our proposed scheme
for Zipf distribution is presented in Section V. We conclude
with discussion on extensions and the minimum queuing delay
problem in the final section.

II. AVERAGE AGE FOR MEMORYLESS UPDATE SCHEMES

Consider a system in which at every time instant t, a
transmitter observes a symbol Xt generated from a finite
alphabet X with pmf P . We assume that the sequence {Xt}∞t=1

is independent and identically distributed (iid). The transmitter
has a noiseless communication channel at its disposal over
which it can transmit one bit per unit time. A memoryless
update scheme consists of a prefix-free code, represented by
its encoder e : X → {0, 1}∗, and a decoder which at each time
instant t declares a time index U(t) ≤ t and an estimate X̂U(t)

for the symbol XU(t) that was observed by the encoder at time
U(t). We focus on error-free schemes and require X̂U(t) to
equal XU(t) with probability 1.

In a memoryless update scheme, once the encoder starts
communicating a symbol x, encoded as e(x), it only picks up
the next symbol once all the bits in e(x) have been transmitted
successfully to the receiver. The time index U(t) is updated
to a new value only upon receiving all the encoded bits for
the current symbol. That is, if the transmission of a symbol is
completed at time t−1, the encoder will start transmitting Xt

in the next instant. Morever, if the final bit of e(Xt) is received
at time t′, U(t′) is updated to t; else it remains unchanged.
A typical sample path for U(t) is given in Figure 2. The age
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Fig. 2: A sample path of U(t) with U(5) = 3.

A(t) of the symbol available at the receiver at time t is given
by

A(t) = t− U(t).

Note that it is natural to allow errors in estimates of XU(t) as
well as allow encoders with memory, but we limit ourselves
to the simple error-free and memoryless setting in this paper.

We are interested in designing prefix-free codes e that
minimize the average age for the memoryless update scheme
described above.

Definition II.1. The average age for a prefix-free code e,
denoted Ā(e), is given by

Ā(e) = lim sup
T→∞

1

T

T∑
t=1

(t− U(t)).

While Ā(e) is a random variable, we will prove that it is
a constant almost surely. Let `(x) denote the length of the
codeword e(x), x ∈ X , and L = `(X) with X ∼ P denote
the random code-length. The result below uses the renewal
reward theorem to provide a closed form expression for Ā(e)
in terms of the first and the second moments of L.

Theorem II.2. Consider a random variable X with pmf P on
X . For a prefix-free code e, the average age Ā(e) is given by

Ā(e) = E [L] +
E
[
L2
]

2E [L]
− 1

2
a.s.. (1)

Denoting by Ā∗ the minimum average age over all prefix-
free codes e, as a corollary of the characterization above, we
can obtain the following bounds for Ā∗.

Corollary II.3. For any pmf P over X , the optimal average
age Ā∗ is bounded as

3

2
H(P )− 1

2
≤ Ā∗ ≤ 3

2
log |X |+ 1.

The proof of lower bound simply uses Jensen’s inequality
and the fact that E [L] ≥ H(P ) for a prefix free code; the
upper bound is obtained by using codewords of constant length
dlog |X |e.

Note that the lengths `(x) are required to be nonnegative
integers. However, for any set of real-valued lengths `(x) ≥ 0,



we can obtain integer-valued lengths by using the rounded-off
values d`(x)e. Unlike the average length cost, the average age
cost function identified in (1) is not an increasing function
of the lengths. Nevertheless, by (1), the average age Ā(e)
achieved when we use the rounded-off values is no more than

E [L] +
E
[
L2
]

2E [L]
+ 2. (2)

Accordingly, in our treatment below we shall ignore the
integer constraints and allow nonnegative real valued length
assignments.

Returning now to the bound of Corollary II.3, the upper
and lower bounds coincide when P is uniform. Recall that a
Shannon code for P assigns lengths `S(x) = d− logP (x)e
to a symbol x. In view of the foregoing discussion, Shannon
codes for a uniform distribution attain the minimum average
age. The next result gives an upper bound on average age for
Shannon codes for an arbitrary P on X .

Lemma II.4. Given a pmf P on X , a Shannon code e for P
has average age at most O(log |X |).

The proof is based on noting that for the distribution P ′ with
P ′(x) ∝ `S(x)P (x), we have H(P ′) ≤ log |X |, which in turn
implies that E

[
L2
]
/E [L] is O(log |X |) when L = `S(X).

It is of interest to examine if, in general, a Shannon code
for P itself has average age close to Ā∗, as was the case
for the uniform distribution. In fact, it is not the case. Below
we exhibit a pmf P where the average age of a Shannon
code for P is Ω(log |X |), yet a Shannon code for another
distribution (when evaluated for P ) has an average age of
only O(

√
log |X |).

Example II.5. Consider X = {0, ..., 2n} and a pmf P on X
given by

P (x) =

{
1− 1

n , x = 0
1
n2n , x ∈ {1, . . . , 2n}.

Using (1), the average age Ā(eP ) for a Shannon code for P
can be seen to satisfy Ā(eP ) ≈ (n+ 2 log n)/4. On the other
hand, if we instead use a Shannon code for the pmf P ′ given
by

P ′(x) =

{
1

2
√

n , x = 0
1−2−

√
n

2n , x ∈ {1, . . . , 2n},

we get E [L] ≈
√
n and EL2 ≈ 2n, whereby Ā(eP ′) ≈ 2

√
n,

just O(
√

log |X |).

Thus, one needs to look beyond the standard Shannon codes
for P to find codes with minimum average age. Interestingly,
we show that Shannon codes for a tilted version of P attain
the optimal asymptotic average age (up to the constant loss of
atmost 2.5 bits incurred by rounding-off lengths to integers). In
particular, for the example above, our proposed optimal codes
will have an average age of only O(

√
log |X |) in comparison

to O(log |X |) of Shannon codes for P .

A key technical tool in design of our codes is a variational
formula that will allow us to linearize the cost function in
(1), thereby rendering Shannon codes for a tilted distribution
optimal. We present this in the next section.

III. A VARIATIONAL FORMULA FOR p-NORM

The expression for average age identified in Theorem II.2
involves the second moment of the random codeword length
L. This is in contrast to the traditional variable length source
coding problem where the goal is to minimize the average
codeword length E [L]. For this standard cost, Shannon codes
which assign a codeword of length d− logP (x)e to the symbol
x come within 1-bit of the optimal cost (see, for instance, [9]).
A variant of this standard problem was studied in [10], where
the goal was to minimize the log-moment generating function
logE [exp(λL)]. A different approach for solving this problem
is given in [11] where the Gibbs variational principle is used
to linearize the nonlinear cost function logE [exp(λL)]. The
next result provides the necessary variational formula to extend
the aforementioned approach to another nonlinear function,
namely ‖L‖p :=(E [Lp])

1
p for p > 1.

Theorem III.1. For a random variable X with distribution
P and p ≥ 1 such that ‖X‖p <∞, we have

‖X‖p = max
Q�P

E

[(
dQ

dP

) 1
p′

|X|

]
,

where p′ = p/(p− 1) is the Hölder conjugate of p.

Proof. For Q � P and 0 < α 6= 1, let Dα(P,Q) denote the
Rényi divergence of order α between distributions Q and P
(see [12]), given by

Dα(P,Q) =
1

α− 1
logEP

[(
dQ

dP

)α]
.

It is well-known that Dα(P,Q) ≥ 0 with equality iff P = Q.
Consider the probability measure Pp � P be given by

dPp
dP

=
1

‖X‖pp
· |X|p.

Then, for α = 1/p′,

0 ≤ Dα(Pp, Q) =
1

α− 1
logE

[(
dQ

dP

)α(
dPp
dP

)1−α
]

= −p logE
[(

dQ

dP

)α
|X|
]

+ p log ‖X‖p,

where the previous equality holds since p(1 − α) = 1. Thus,
for every Q� P ,

E
[(

dQ

dP

)α
|X|
]
≤ ‖X‖p,

with equality iff Pp = Q.



IV. PREFIX-FREE CODES WITH MINIMUM AVERAGE AGE

We now present a recipe for designing prefix-free codes with
minimum average age. By Theorem II.2, we seek prefix-free
codes that minimize the cost

E [L] +
E
[
L2
]

2E [L]
, (3)

where L = `(X) for X with pmf P . As is well known,
a prefix-free code with lengths {`(x)∈ N, x ∈ X} exists iff
lengths satisfy Kraft’s inequality (cf. [9]), i.e., iff∑

x∈X
2−`(x) ≤ 1. (4)

Following the discussion leading to (2), we relax the integral
constraints for `(x) and search over all real-valued `(x) ≥ 0
satisfying (4). Specifically, we search for optimal lengths over
the set Λ =

{
` ∈ R|X |+ :

∑
x∈X 2−`(x) ≤ 1

}
. As noticed in

(2), this can incur a loss of only a constant. A key challenge
in minimizing (3) is that it is nonlinear. We linearize this cost
by relying on Theorem III.1 as follows:

1) Note that

E [L] +
E
[
L2
]

2E [L]
= max

z≥0

(
1− z2

2

)
E [L] + z‖L‖2.

2) Then, Theorem III.1 yields E [L] +
E[L2]
2E[L] equal to

= max
z≥0

(
1− z2

2

)
E [L] + z max

Q�P

∑
x∈X

√
Q(x)P (x)`(x),

= max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x),

where

gz,Q,P (x) :=

(
1− z2

2

)
P (x) + z

√
Q(x)P (x). (5)

Thus, our goal is to identify the minimizer `∗ that achieves

∆∗(P ) = min
`∈Λ

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x). (6)

The result below captures our main observation and facilitates
the computation of optimal lengths attaining ∆∗(P ).

Theorem IV.1. The optimal minimax cost ∆∗(P ) in (6)
satisfies

∆∗(P ) = max
z≥0

max
Q�P

min
L∈Λ

∑
x∈X

gz,Q,P (x)`(x)

= max
z∈R,Q�P,

(z,Q)∈G

∑
x∈X

gz,Q,P (x) log

∑
x′∈X gz,Q,P (x′)

gz,Q,P (x)
,

(7)

where G := {z ∈ R, Q ∈ R|X | : gz,Q,P (x) ≥ 0 ∀x ∈ X}.
Furthermore, if (z∗, Q∗) is the maximizer of the right-side
of (7), then the minimax cost (6) is achieved by an optimal
average length code for the pmf P ∗ on X given by

P ∗(x) =
gz∗,Q∗,P (x)∑

x′∈X gz∗,Q∗,P (x′)
.

Thus, our prescription for design of update codes is simple:
Use a Shannon code for P ∗ instead of P . To compute P ∗, we
need to solve the optimization problem in (7). This problem is
concave in Q for each fixed z and is concave in z for each fixed
Q, but may not be jointly concave in (z,Q). Nevertheless,
we can solve it using standard numerical packages; see next
section for further discussion. Also, it is intriguing to examine
how much our recipe gains over a Shannon code for the
original distribution P . This, too, will be discussed in the next
section.

V. NUMERICAL RESULTS FOR ZIPF DISTRIBUTION

We now illustrate our recipe for construction of prefix-
free codes that yield minimum average age for memoryless
update schemes when P is a Zipf distribution2. Specifically,
we illustrate our qualitative results using the Zipf(s,N)
distribution with alphabet X = {1, ..., N} and given by
P (i) = i−s∑N

j=1 j
−s , 1 ≤ i ≤ N . When the parameter s is

close to 0, the Zipf(s,N) distribution approaches a uniform
distribution, and therefore, as seen earlier, Shannon codes
for P are close to optimal. However, for larger values of s,
we note in Figure 3 that our recipe yields prefix-free codes
with smaller average age than Shannon codes for P . When we
round-off real lengths to integers, the gains are subsided but
still exist. The distribution P ∗ we use to construct our codes
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Fig. 3: Comparison of proposed codes and Shannon codes for
Zipf(s, 256) with varying s. The average age is computed
using real-valued lengths as well as lengths rounded-off to
integer values.

seems to be a flattened version of the original Zipf distribution;
we illustrate the two distributions for Zipf(1, 8) in Figure 4.
As we see in Figure 4, P ∗ and P are very close in this case.

Thus, while Example II.5 illustrated high gains of the
proposed code over Shannon codes for P , for the specific case
of Zipf distributions the gains may not be large. Characterizing
this gain for any given distribution is a direction for future
research.

2We model all our optimization problems in AMPL [13] and solve it using
SNOPT [14] solver.
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VI. DISCUSSION ON EXTENSIONS

We have restricted our treatment to deterministic memo-
ryless update schemes. A natural extension to randomized
memoryless schemes would entail allowing the encoder
to make a randomized decision to skip transmission of a
symbol even when the channel is free (we can allocate a
special symbol ∅ to signify no transmission to the receiver).
Specifically, denoting by θ(x) the probability with which the
encoder will transmit the symbol x, a modification of the proof
of Theorem II.2 yields that the average age for the randomized
scheme is given by

E [L(θ)]

E [θ(X)]
+

E
[
L(θ)2

]
2E [L(θ)]

− 1

2
.

Heuristically, it might be baffling what purpose such an
omission of transmission can serve. But the following example
illustrates the gain in average age that can be obtained by
randomly omitting some transmissions.

Example VI.1. Consider X = {1, ..., 64} and the following
pmf P (x) = 1/4 for x ∈ {1, 2, 3} and 1/244 otherwise. Since
H(P ) = 3.483, Corollary II.3 yields that the average age of
the deterministic memoryless update scheme is bounded below
by 4.724. Next, consider a randomized update scheme with
θ(x) = 1 for x ∈ {1, 2, 3} and 0 otherwise. For this choice,
the effective pmf Pθ is uniformly distributed over the symbols
{1, 2, 3} ∪ {φ}. Thus, the optimal length assignment for this
case assigns `(x) = 2 to all the symbols and the average age
equals 3.17, which is less than the lower bound of 4.724 for
the deterministic scheme.

Next, we point out a use-case for Theorem III.1 in a
minimum queuing delay problem introduced in [15]. The
setting is similar to the one we described with two differences:
First, the arrival process of source symbols is a Poisson process
of rate λ; and second, the encoder is not allowed to skip source
symbols. Instead, each symbol is encoded and scheduled for
transmission in a first-come-first-serve (FCFS) queue. Our goal
is to design a source code e that minimizes the average queuing
delay D̄(e) encountered by the source sequence. Using the
expression for queuing delay for an M/G/1 queue, we can

show that the average delay D̄(e) is given by

D̄(e) =

{
E[L2]

2(Lth−E[L]) + E [L] , E [L] < Lth,

∞, E [L] ≥ Lth,

where Lth := 1
λ is the minimum average codeword length for

the queue to be stable. An algorithmic method for finding the
length assignments `(x), x ∈ X , that minimizes D̄(e) was
presented in [16]. As is clear from the form of average delay
formula above, the variational formula of Theorem III.1 and
the recipe used to design minimum average age codes in this
paper can be used to design minimum average delay codes as
well. In simulations we find that our proposed recipe gives
performance comparable with [16] when E [L] is not very
close to Lth, namely the moderate load regime, but it requires
much less computational effort than the algorithm proposed
in [16]. However, we work with rounded-off lengths and do
not have a theoretical guarantee of approximation.

Further details for these extensions and the proofs of asso-
ciated results will be made available in a longer version of
this abridged conference submission.
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