E2 205 Error-Control Coding Homework 1

Discussion: 2:00 PM, Aug 23, 2019

1. Let $\underline{x}, \underline{y} \in \mathbb{F}_{2}^{16}$ with $d_{H}(\underline{x}, \underline{y})=6$. What is the size of the intersection

$$
B(\underline{x}, 4) \bigcap B(\underline{y}, 4)
$$

where $B(\underline{z}, r)$ for $\underline{z} \in \mathbb{F}_{2}^{16}$, denotes the set of all vectors in \mathbb{F}_{2}^{16} whose Hamming distance from \underline{z} is $\leq r$?
2. Define the intersection of two binary vectors \underline{x} and \underline{y} to be the vector

$$
\underline{x} * \underline{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \cdots, x_{n} y_{n}\right)^{t}
$$

which has 1's only where both \underline{x} and \underline{y} do. For example

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right]^{t} *\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 1
\end{array}\right]^{t}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1
\end{array}\right]^{t} .
$$

Show that

$$
w(\underline{x}+\underline{y})=w(\underline{x})+w(\underline{y})-2 \cdot w(\underline{x} * \underline{y})
$$

where $w(\underline{z})$ denotes the Hamming weight of \underline{z}.
3. What is the smallest possible minimum distance of a block code of length n that can correct 2 errors and detect 5 errors? If used only for error-detection, what is the maximum number of errors that the code can detect ?
4. A ternary code \mathscr{C} is a code whose symbol alphabet is the set $\{0,1,2\}$, i.e., \mathscr{C} is a subset of $\{0,1,2\}^{n}$. Even in $\{0,1,2\}^{n}$, the definitions of Hamming weight and Hamming distance remain as in the binary case. In the binary case, a code is a (t_{d}, t_{c}) code iff

$$
d_{\min } \geq t_{d}+t_{c}+1
$$

Is this also true in the ternary case? (The definition of a $\left(t_{d}, t_{c}\right)$ code remains as in the binary case.) Justify your answer.
5. Let A be an $(m \times n)$ matrix over the field \mathbb{F}_{2}. Given $\underline{a}, \underline{b} \in \mathbb{F}_{2}^{n}$, we define $\underline{a} \sim \underline{b}$ if

$$
A(\underline{a}-\underline{b})=\underline{0} .
$$

Prove that this is an equivalence relation. How many equivalence classes are there if A has rank r ?
6. Define two binary vectors of length $2 m, \underline{z}_{1}=\left(\underline{x}_{1}, \underline{y}_{1}\right)$, and $\underline{z}_{2}=\left(\underline{x}_{2}, \underline{y}_{2}\right)$ to be equivalent iff

$$
\underline{x}_{1}=\underline{x}_{2} \text { and }
$$

$$
d_{H}\left(\underline{y}_{1}, \underline{y}_{2}\right) \text { is even. }
$$

(a) Show that this is an equivalence relation on the set $\mathbb{F}^{2 m}$.
(b) Into how many equivalence classes does this partition $\mathbb{F}^{2 m}$?
7. Provide an example of a non-Abelian group.
8. Let $G=\mathbb{F}_{2}^{5}$. Let H be the subset of G consisting of the four 5 -tuples shown below:

Verify that H is a subgroup of G and identify all the cosets of H in G.
9. Let Z_{12} denote the set of integers modulo 12 under modulo 12 addition. Identify all subgroups of $G=Z_{12}$.

