E2 205 Error-Control Coding Homework 2

Discussion: 2:00 PM, September 13, 2019

1. Consider the subset H of the real numbers \mathbb{R} given by

$$
H=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

where \mathbb{Q} denotes the set of all rational numbers. Is H a field under the usual operations of real-number addition and multiplication? Justify your answer.
2. Consider the collection of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. We define addition of functions in the usual way:

$$
(f+g)(x)=f(x)+g(x), \quad x \in \mathbb{R}
$$

and multiplication via composition:

$$
(f \cdot g)(x)=f(g(x)), \quad x \in \mathbb{R}
$$

What can you say about the algebraic structure of the class of such functions under this pair of operations ?
3. Give examples of
(a) a ring R without identity,
(b) a ring R_{I} with identity that is not a division ring,
(c) a non-commutative ring $R_{N C}$,
(d) a commutative ring R_{C} that is not an integral domain.
4. Let V be a vector space over a field \mathbb{F} and let S_{1}, S_{2} be subspaces of V. Define

$$
S_{1}+S_{2}=\left\{x+y \mid x \in S_{1}, y \in S_{2}\right\} .
$$

Show that $S_{1} \cap S_{2}$ and $S_{1}+S_{2}$ are subspaces of V.
5. Consider the set $S=\{0\} \bigcup\left\{\alpha^{i} \mid 0 \leq i \leq 6\right\}$ along with two operations addition and multiplication. Multiplication in the set S is performed as follows:

$$
\alpha^{i} \cdot \alpha^{j}=\alpha^{k}, 0 \leq i, j, k \leq 6 \text { where } k=i+j \quad(\bmod 7)
$$

and

$$
0 \cdot x=x \cdot 0=0, \text { for any element } x \text { in } S
$$

Also

$$
0+x=x+0=x, \text { for any element } x \text { in } S
$$

All other additions are governed by the table below:

+	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}
1	0	α^{3}	α^{6}	α	α^{5}	α^{4}	α^{2}
α	α^{3}	0	α^{4}	1	α^{2}	α^{6}	α^{5}
α^{2}	α^{6}	α^{4}	0	α^{5}	α	α^{3}	1
α^{3}	α	1	α^{5}	0	α^{6}	α^{2}	α^{4}
α^{4}	α^{5}	α^{2}	α	α^{6}	0	1	α^{3}
α^{5}	α^{4}	α^{6}	α^{3}	α^{2}	1	0	α
α^{6}	α^{2}	α^{5}	1	α^{4}	α^{3}	α	0

Is the set S together with the operations of addition and multiplication a field? Show all your working and explain your answer.
6. Find a suitable generator matrix G for the linear block code whose parity-check matrix H is given by

$$
H=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Justify your method.
7. The matrix H is the (3×7) parity-check matrix of a $[7,4,3]$ Hamming code \mathscr{C}.
(a) What are the parameters $\left[n, k, d_{\text {min }}\right]$ of the dual \mathscr{C}^{\perp} ?
(b) Let H_{1} be the (4×7) matrix obtained by adding the all-1 row to the 3 rows of H :

$$
H_{1}=\left[\right] .
$$

What are the parameters $\left[n, k, d_{\text {min }}\right]$ of the code \mathscr{C}_{1} that is the nullspace of H_{1} ?
8. For each of the parity-check matrices $H_{i}, i=1,2,3$ given below, determine the minimum distances d_{i} of the associated binary linear code \mathscr{C}_{i}, as well as a pair of codewords $\left(\underline{a}_{i}, \underline{b}_{i}\right)$ belonging to \mathscr{C}_{i}, whose Hamming distance, $d_{H}\left(\underline{a}_{i}, \underline{b}_{i}\right)$, equals d_{i}.

$$
\begin{aligned}
& H_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right] \\
& H_{2}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] \\
& H_{3}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

9. Consider the linear block code \mathscr{C} having generator matrix given by

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) What is the minimum distance of \mathscr{C} ?
(b) What is the minimum distance of the dual code \mathscr{C}^{\perp} ?
10. (from Lin and Costello) Consider a $[8,4]$ linear code whose parity-check equations are given by

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

where $u_{0}, u_{1}, u_{2}, u_{3}$ are the message symbols and $v_{0}, v_{1}, v_{2}, v_{3}$ are the parity-check symbols. Find generator and parity-check matrices for this linear code.

