E2 205 Error-Control Coding Homework 2

Discussion: 2:00 PM, September 13, 2019

1. Consider the subset *H* of the real numbers \mathbb{R} given by

$$H = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

where \mathbb{Q} denotes the set of all rational numbers. Is *H* a field under the usual operations of real-number addition and multiplication ? Justify your answer.

2. Consider the collection of all functions $f : \mathbb{R} \to \mathbb{R}$. We define addition of functions in the usual way:

$$(f+g)(x) = f(x) + g(x), \quad x \in \mathbb{R}$$

and multiplication via composition:

$$(f \cdot g)(x) = f(g(x)), \ x \in \mathbb{R}$$

What can you say about the algebraic structure of the class of such functions under this pair of operations ?

- 3. Give examples of
 - (a) a ring *R* without identity,
 - (b) a ring R_I with identity that is not a division ring,
 - (c) a non-commutative ring R_{NC} ,
 - (d) a commutative ring R_C that is not an integral domain.
- 4. Let V be a vector space over a field \mathbb{F} and let S_1 , S_2 be subspaces of V. Define

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}.$$

Show that $S_1 \cap S_2$ and $S_1 + S_2$ are subspaces of *V*.

5. Consider the set $S = \{0\} \cup \{\alpha^i \mid 0 \le i \le 6\}$ along with two operations addition and multiplication. Multiplication in the set *S* is performed as follows:

$$\alpha^{i} \cdot \alpha^{j} = \alpha^{k}, \ 0 \le i, j, k \le 6 \text{ where } k = i + j \pmod{7}$$

and

$$0 \cdot x = x \cdot 0 = 0$$
, for any element x in S

Also

$$0+x = x+0 = x$$
, for any element x in S.

All other additions are governed by the table below:

+	1	α	α^2	α^3	α^4	α^5	α^6
1	0	α^3	α^{6}	α	α^5	α^4	α^2
α	α^3	0	α^4	1	α^2	α^{6}	α^5
α^2	α^{6}	α^4	0	α^{5}	α	α^3	1
α^3	α	1	α^5	0	α^{6}	α^2	α^4
α^4	α^{5}	α^2	α	α^{6}	0	1	α^3
α^5	α^4	α^6	α^3	α^2	1	0	α
α^{6}	α^2	α^5	1	α^4	α^3	α	0

Is the set *S* together with the operations of addition and multiplication a field ? Show all your working and explain your answer.

6. Find a suitable generator matrix G for the linear block code whose parity-check matrix H is given by

$$H = \left[\begin{array}{rrrrr} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{array} \right].$$

Justify your method.

- 7. The matrix H is the (3×7) parity-check matrix of a [7,4,3] Hamming code \mathscr{C} .
 - (a) What are the parameters $[n, k, d_{min}]$ of the dual \mathscr{C}^{\perp} ?
 - (b) Let H_1 be the (4×7) matrix obtained by adding the all-1 row to the 3 rows of H:

$$H_1 = \begin{bmatrix} H \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

What are the parameters $[n, k, d_{min}]$ of the code \mathcal{C}_1 that is the nullspace of H_1 ?

8. For each of the parity-check matrices H_i , i = 1, 2, 3 given below, determine the minimum distances d_i of the associated binary linear code \mathscr{C}_i , as well as a pair of codewords $(\underline{a}_i, \underline{b}_i)$ belonging to \mathscr{C}_i , whose Hamming distance, $d_H(\underline{a}_i, \underline{b}_i)$, equals d_i .

$$H_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$
$$H_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
$$H_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

9. Consider the linear block code \mathscr{C} having generator matrix given by

$$G = \left[\begin{array}{rrrrr} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{array} \right].$$

- (a) What is the minimum distance of \mathscr{C} ?
- (b) What is the minimum distance of the *dual* code \mathscr{C}^{\perp} ?
- 10. (from Lin and Costello) Consider a [8,4] linear code whose parity-check equations are given by

$$v_0 = u_1 + u_2 + u_3$$

$$v_1 = u_0 + u_1 + u_2$$

$$v_2 = u_0 + u_1 + u_3$$

$$v_3 = u_0 + u_2 + u_3$$

where u_0, u_1, u_2, u_3 are the message symbols and v_0, v_1, v_2, v_3 are the parity-check symbols. Find generator and parity-check matrices for this linear code.