E2 205 Error-Control Coding Homework 4

1. Consider the rate $1 / 2$ convolutional code with

$$
G(D)=\left[\begin{array}{ll}
1+D+D^{2} & 1+D^{2}
\end{array}\right]
$$

(a) Draw a complete trellis diagram up to node level 6 (beginning at node level 0). Label all branches with code symbols.
(b) Use the trellis to determine the free distance $d_{\text {free }}$ of the code.
(c) If the received sequence (across a BSC) is

$$
\underline{r}=\left(\begin{array}{llllll}
01 & 00 & 01 & 00 & 00 & 00 \ldots \ldots
\end{array}\right)
$$

find (the information sequences associated to) all survivors at node level 6.
(d) If the received sequence (across an AWGN channel) is

$$
\underline{r}=\left(\begin{array}{lllllll}
4-1 & -32 & 6-5 & 24 & 53 & 5 & 5 \ldots \ldots
\end{array}\right)
$$

find (the information sequences associated to) all survivors at node level 6.
2. The polynomial generator matrices (PGM)

$$
\begin{aligned}
G_{1}(D) & =\left[\begin{array}{ll}
1+D^{2}, & 1+D
\end{array}\right] \\
G_{2}(D) & =\left[\begin{array}{ll}
1+D, & 1
\end{array}\right]
\end{aligned}
$$

generate the same convolutional code \mathscr{C}. If the (infinite length) all-1 input sequence $\{u(k)\}_{k=0}^{\infty}=$ $(111 \ldots)$ produces the codeword $\left(V^{(1)}(D), V^{(2)}(D)\right)$ when PGM $G_{1}(D)$ is employed, identify the first 10 symbols of the input sequence $\left\{u_{k}^{\prime}\right\}_{k=0}^{\infty}$ which will yield the same codeword when PGM $G_{2}(D)$ is employed. Make clear your reasoning.
3. Consider the convolutional code having polynomial generator matrix (PGM)

$$
G(D)=\left[\begin{array}{ll}
1, & 1+D] .
\end{array}\right.
$$

(a) Draw the state diagram of the (finite state machine associated to the code) using dotted lines to denote a 1 at the input.
(b) Determine the generating function $A_{\mathrm{END}}(L, D, I)$ associated to this code.
(c) What is the minimum free distance $d_{\text {free }}$ of this code ?
4. In the field of formal power series $\mathbb{F}_{2}((X))$, what is the inverse of $\left(x+x^{2}\right)$?
5. Given a binary convolutional code \mathscr{C} having polynomial generator matrix (PGM)

$$
G(D)=\left[1+D+D^{3}, \quad D+D^{4}\right]
$$

how many states are there in the corresponding trellis diagram of the code ?
6. Will the choice of generator matrix,

$$
G(D)=\left[1+D+D^{2}+D^{3}, \quad 1+D^{2}+D^{3}+D^{5}, \quad 1+D^{4}\right]
$$

cause the associated convolutional code \mathscr{C} to exhibit catastrophic error propagation ? Explain fully your answer.
7. A PGM $G(D)$ represents one possible encoder for a convolutional code. For the code that has the PGM

$$
G(D)=\left[1+D+D^{3}, \quad D+D^{4}\right]
$$

as one possible encoder, provide a second, not necessarily distinct encoder that has catastrophic error propagation. Explain your reasoning.
8. In the field of of formal power series $F_{2}[[D]]$, find the first 7 terms in the power-series expansion of
(a) $\frac{1}{1+D^{2}}$
(b) $\frac{D}{1+D+D^{2}}$
(c) $\frac{D^{2}}{1+D^{2}+D^{5}}$
9. Determine whether the convolutional codes encoded using the $G(D)$ below given below are catastrophic. If so, find an infinite weight input sequence that generates a codeword of finite weight.
(a) $G(D)=\left[1+D+D^{3}, 1+D+D^{2}, 1+D^{2}+D^{3}\right]$.
(b) $G(D)=\left[1+D^{3}, 1+D+D^{2}+D^{4}, 1+D^{2}+D^{3}+D^{4}\right]$.

Hint: The irreducible polynomials of degree ≤ 3 over $G F(2)$ are listed below:
degree 1: $D, 1+D$
degree $2: 1+D+D^{2}$
degree 3: $1+D+D^{3}, 1+D^{2}+D^{3}$.
10. Use Euclid's algorithm to find the greatest common divisor $g(D)$ of
(a) $g_{1}(D)=1+D^{20}, g_{2}(D)=1+D^{15}$.
(b) $g_{1}(D)=D+D^{2}+D^{4}, g_{2}(D)=1+D^{8}$.

In each case also find a pair $\left\{a_{1}(D), a_{2}(D)\right\}$ of polynomials such that

$$
a_{1}(D) g_{1}(D)+a_{2}(D) g_{2}(D)=g(D) .
$$

11. Determine an upper bound to the bit error probability $P_{b e}$ of the rate $1 / 3$ convolutional code having

$$
G(D)=\left[\begin{array}{lll}
1+D & 1+D^{2} & 1+D+D^{2}
\end{array}\right]
$$

