E2 205 Error-Control Coding Homework 6

1. Use the Euclidean division algorithm to determine the $g c d$ of 6711 and 831. Express the $g c d$ as a linear combination $u * 6711+v * 831$ of 6711 and 831 .
2. Over \mathbb{F}_{2}, compute if possible, the inverse of $(1+x)$ modulo $\left(1+x+x^{2}+x^{3}+x^{4}\right)$.
3. Identify all primitive elements of the finite fields of size 7 and 13.
4. Let α be a primitive element of $G F(64)$. Identify all the elements in all the subfields of $G F(64)$ in terms of α.
5. Identify the 3 -cyclotomic cosets modulo 26 as well as the 2 -cyclotomic cosets modulo 19 .
6. Let α be a primitive element of $G F\left(2^{6}\right)$. Identify all the correct answers below with a $\sqrt{ }$

- $\alpha+\alpha^{4} \in G F(4)$
- $\alpha+\alpha^{8} \in G F(8)$
- none of the above

7. If α, β in \mathbb{F}_{16} have orders a, b, then is it always true that $\alpha \beta$ has order $=\operatorname{lcm}(a, b)$? Justify your answer.
8. The polynomials over $G F(2)$ given below are all irreducible. Identify with a $\sqrt{ }$, all those having the property that all of their zeros are contained in $G F(256)$.

- $x^{2}+x+1$
- $x^{3}+x^{2}+1$
- $x^{4}+x^{3}+1$
- $x^{5}+x^{2}+1$
- $x^{6}+x+1$
- $x^{8}+x^{6}+x^{5}+x^{4}+1$

9. Use the irreducible polynomial (irreducible over \mathbb{F}_{3}) $x^{2}+x+2$ to construct a finite field of 9 elements. If α denotes a root of $x^{2}+x+2$, then α is known to be primitive in \mathbb{F}_{9}.
(a) Set up an add-1 table for \mathbb{F}_{9}.
(b) Identify the 3 -cyclotomic cosets modulo 8.
(c) Find the minimal polynomials of all elements in the field.
10. Is $\mathbb{F}_{2}[x] /\left(x^{4}+x^{3}+x^{2}+1\right)$ a field ? Explain your reasoning as fully as possible.
11. The elements α, β in $\mathbb{F}_{2^{6}}$ have orders 21 and 9 respectively. Identify as a function of α and β, a primitive element of $\mathbb{F}_{2^{6}}$.
12. How many binary irreducible polynomials of degree 5 are there?
13. Identify all the finite fields that are subfields of $\mathbb{F}_{2^{12}}$. If α in $\mathbb{F}_{2^{12}}$ is primitive, identify as a function of α, a primitive element for each of these subfields.
14. Identify the smallest finite field of characteristic 2 that contains a primitive 17 -th root of unity.
15. In the notation used in class with regard to finite field Fourier transforms, let $q=2, N=15$ and α be a primitive element of F_{16} satisfying $\alpha^{4}+\alpha+1=0$. Let

$$
(s(t), t=0,1,2, \ldots, 14)=000110000101101 .
$$

Compute the Fourier transform $\hat{s}(\lambda)$ of $s(t)$. Compute also the Fourier transform of $s(t)+$ $s(t+2)$.

