E2 205 Error-Control Coding Lecture 10

Scribe - Johns U K

September 16, 2019

1 Maximum Likelihood Decoding

Setting
Consider transmitting of a binary codeword over a binary input channel as in Fig 1. Also Consider an AWGN channel as in Fig 2. Each w_{i} is $i i d$. The coding scheme employed is Binary Antipodal.

Figure 1: Binary Symmetric Channel

Figure 2: AWGN Channel

Let \mathcal{C} be a binary code and let $M=|\mathcal{C}|$. Let y^{n} be the space of received vectors. The role of decoder is to partition y^{n} into M regions, one for each code word as in Fig 3 below.

Figure 3: Received Vector Space Partitioning

If $\vec{y} \in H_{i}$, the decoder declares the estimated (decoded) codeword $\hat{c}=\overrightarrow{c_{i}}$ where

$$
\begin{equation*}
\mathcal{C}=\left\{\vec{c}_{i}: 1 \leq i \leq M\right\} . \tag{1}
\end{equation*}
$$

Let ε denote the codeword error event i.e. event of decoding to an incorrect codeword. Then, ε^{c} denotes the correct decoding event.

$$
P\left(\varepsilon^{c}\right)=\sum_{i=1}^{n} P\left(\overrightarrow{c_{i}}\right) P\left(\varepsilon^{c} \mid \overrightarrow{c_{i}}\right)
$$

$$
\begin{aligned}
P\left(\varepsilon^{c}\right) & =\sum_{i=1}^{n} P\left(\overrightarrow{c_{i}}\right) P\left(\vec{y} \in H_{i} \mid \overrightarrow{c_{i}}\right) \\
& =\sum_{i=1}^{n} P\left(\overrightarrow{c_{i}}\right) \int_{H_{i}} P\left(\vec{y} \mid \overrightarrow{c_{i}}\right) d y \\
& =\sum_{i=1}^{n} P\left(\overrightarrow{c_{i}}\right) \int_{y^{n}} P\left(\vec{y} \mid \overrightarrow{c_{i}}\right) \mathbb{1}_{\mathrm{i}}(\vec{y}) d y, \text { where } \mathbb{1}_{\mathbf{i}}(\vec{y})=\left\{1, \text { if } \vec{y} \in H_{i} \text { and } 0 \text { elsewhere }\right\} \\
& =\int_{y^{n}}\left[\sum_{i=1}^{n} P\left(\overrightarrow{c_{i}}\right) P\left(\vec{y} \mid \overrightarrow{c_{i}}\right) \mathbb{1}_{\mathbf{i}}(\vec{y}) d y\right]
\end{aligned}
$$

Therefore, $\mathrm{P}\left(\overrightarrow{c_{i}}\right) \mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right)$ is the contribution(for a given $\left.\vec{y}\right)$ to the problem of correct decoding if $\vec{y} \in H_{i}$. It follows that, to minimise the $\mathrm{P}(\varepsilon)$ given by \vec{y} $\in y^{n}$, we assign $\vec{y} \in H_{i}$ such that, $\mathrm{P}\left(\overrightarrow{c_{i}}\right) \mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right) \geq \mathrm{P}\left(\overrightarrow{c_{j}}\right) \mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{j}}\right), i \neq j$.

This is known as Minimum Probability of Error Decoding (MPE).
If $\mathrm{P}\left(\overrightarrow{c_{i}}\right)=\mathrm{P}\left(\overrightarrow{c_{j}}\right)=\frac{1}{M}$, i.e. if the codewords are equally likely, the above equation reduces to $\mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right) \geq \mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{j}}\right)$, which is called as the Maximum Likelihood Decoding.

Lemma 1 Over BSC as in Figure 1, MLD reduces to minimum distance decoding (MDD).

Proof: Let $d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right)=d$.
$\mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right)=\varepsilon^{d}(1-\varepsilon)^{n-d}=(1-\varepsilon)^{n}\left(\frac{\varepsilon}{1-\varepsilon}\right)^{d}$
If $\varepsilon<0.5, \frac{\varepsilon}{1-\varepsilon}<1$
$\Longrightarrow \mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right)$ is maximized by minimizing $d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right)$

In case of AWGN channel,

$$
\mathrm{P}\left(\vec{y} \mid \overrightarrow{c_{i}}\right)=\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-1}{2 \sigma^{2}}\left(y_{j}-c_{i j}\right)^{2}\right),
$$

where $c_{i j}$ is the $j^{t} h$ component of $\overrightarrow{c_{i}}$. Thus MLD reduces to minimum Euclidean distance decoding given by

$$
\begin{equation*}
d_{E}^{2}\left(y, c_{i}\right)=\sum_{i=1}^{n}\left(y_{i}-c_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

2 Syndrome Decoding(Slepian Wolf Decoding)

Consider BSC and let the code used be linear code. The rule followed in MLD is to find $\overrightarrow{c_{i}}$ such that $d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right)$ is minimum.

$$
d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right)=\left\{W_{H}\left(\vec{y}+\overrightarrow{c_{i}}\right) \mid \vec{c} \in \mathcal{C}\right\}
$$

So, equivalently, we are looking for $\overrightarrow{c_{i}}$ such that,

$$
W_{H}\left(\vec{y}+\overrightarrow{c_{i}}\right)=\min \left\{W_{H}\left(\vec{y}+\overrightarrow{c_{j}}\right) \mid \overrightarrow{c_{j}} \in \mathcal{C}\right\}=\min _{z}\left\{W_{H}(\vec{z}) \mid \vec{z} \in \vec{y}+\mathcal{C}\right\}
$$

Here, $\vec{y}+\mathcal{C}$ is a coset of code \mathcal{C}. Now having found such a \vec{z}, for some i , we have

$$
\hat{c}=\overrightarrow{c_{i}}=\vec{y}+\vec{z}
$$

Hence, the decoding algorithm is as follows
(a) Given \vec{y}, form $\vec{y}+\mathcal{C}$
(b) Look for least Hamming weight vector \vec{z} in $\vec{y}+\mathcal{C}$
(c) $\hat{c}=\vec{y}+\vec{z}$

Lemma Let \mathcal{C} be a $[\mathrm{n}, \mathrm{k}]$ linear code and H be its $\mathrm{p}-\mathrm{c}$ matrix. Then, there exists a one-to-one correspondence between the sets $\{\vec{y}+\mathcal{C}\}$ and \mathbb{F}_{2}^{n-k}, given by $H \vec{y} \in \mathbb{F}_{2}^{n-k}$.

Proof: Clearly collection of all $\overrightarrow{y_{i}}+\mathcal{C}$ is of size 2^{n-k}.
If $\overrightarrow{y_{1}}+\mathcal{C}=\overrightarrow{y_{1}}+\mathcal{C}$
$\Longrightarrow \overrightarrow{y_{1}}+\overrightarrow{c_{1}}=\overrightarrow{y_{1}}+\overrightarrow{c_{2}}$
$\Longrightarrow \mathrm{H} \overrightarrow{y_{1}}+\mathrm{H} \overrightarrow{c_{1}}=\mathrm{H} \overrightarrow{y_{1}}+\mathrm{H} \overrightarrow{c_{2}}$
$\Longrightarrow \mathrm{H} \overrightarrow{y_{1}}=\mathrm{H} \overrightarrow{y_{1}^{\prime}}$

It remains to show that the mapping is H .

$$
H \overrightarrow{y_{1}}=H \overrightarrow{y_{2}} \Longrightarrow H\left(\overrightarrow{y_{1}}+\overrightarrow{y_{2}}\right)=0
$$

$\Longrightarrow \overrightarrow{y_{1}}+\overrightarrow{y_{2}} \in \mathcal{C}$
$\Longrightarrow \overrightarrow{y_{1}}=\overrightarrow{y_{2}}+\vec{c}, \vec{c} \in \mathcal{C}$
$\Longrightarrow \overrightarrow{y_{1}}+\mathcal{C}=\overrightarrow{y_{2}}+\mathcal{C}$
For example consider $\mathcal{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]=[4,2,2]$

$$
G=H=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

i.e. a self dual code
let $\mathcal{C}=\left\{\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{c_{3}}, \overrightarrow{c_{4}}\right\}$

$$
\begin{aligned}
& c_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& c_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \\
& c_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& c_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Table 1: Standard Array Decoding

${\overrightarrow{c_{1}}}^{T}$	$\overrightarrow{c_{2}}{ }^{T}$	$\overrightarrow{c_{3}}{ }^{T}$	$\vec{c}_{4}{ }^{T}$	\vec{s}^{T}	
0000	1010	0101	1111	00	\mathcal{C}
0001	1011	0100	1110	01	$\mathcal{C}+0001$
0010	1000	0111	1101	10	$\mathcal{C}+0010$
0011	1001	0110	1100	11	$\mathcal{C}+0011$

The first column in the above table is known as the Coset Leader. Also, We have

$$
2 t_{c}+1 \leqslant d_{\min }=2 \Longrightarrow t_{c}=0
$$

Syndrome $\vec{s}=H \vec{y}$

Decoding Technique

Suppose

$$
\begin{gathered}
y=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \\
H y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
e=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
c=y+e=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Clearly, only those error patterns corresponding to coset leaders (first column of Table 1) can be correctly decoded.

2.1 Performance of Standard Array Decoder

Let \vec{e} be the actual error pattern.

$$
\begin{gathered}
\therefore \vec{y}=\vec{c}+\vec{e} \\
\vec{s}=\mathrm{H} \vec{y}=\mathrm{H}(\vec{c}+\vec{e})=\mathrm{H} \vec{e}
\end{gathered}
$$

\therefore Syndrome associated with \vec{y} is same as that associated with \vec{e}.
Let \hat{e} be the coset leader associated with syndrome $\vec{s}=\mathrm{H} \vec{e}$.

$$
\hat{c}=\vec{y}+\hat{e}=\vec{c}+\vec{e}+\hat{e}
$$

\Longrightarrow Decoding is correct only if $\vec{e}=\hat{e}$ i.e. iff the error pattern is coset Leader.

3 Reed Muller Codes

Reed Muller Codes are based on Boolean Functions. A Boolean function f in binary multivariables is a mapping

$$
f:\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\cdot \\
\cdot \\
\cdot \\
X_{m}
\end{array}\right] \rightarrow \mathbb{F}_{2}
$$

For example the truth table as follows is an example of Boolean Function.

Table 2: Truth Table for X_{1}, X_{2} and X_{3}

X_{1}	$X_{2} X_{3}=00$	$X_{2} X_{3}=01$	$X_{2} X_{3}=11$	$X_{2} X_{3}=10$
0	0	1	1	0
1	1	1	1	1

Clearly, from Table 2, $2^{2^{n}}$ boolean functions are possible with n variables ($\mathrm{n}=3$ in Table 2). Thus there exists a one-to-one mapping from set of all boolean functions to the set of all truth tables. i.e. given a boolean function, the corresponding truth table can be deduced.

Every boolean function has a unique representation as a multivariate polynomial in n-binary variables over \mathbb{F}_{2} by Lagrange Interpolation as

$$
f\left(X_{1}, X_{2}, \ldots X_{m}\right)=\sum_{a 1} \sum_{a 2} \ldots \sum_{a m} f\left(a_{1}, a_{2}, \ldots a_{m}\right) \prod_{i=1}^{m}\left(X_{i}+a_{i}+1\right)
$$

This is called as the Reed Muller Canocial expansion of Boolean function. For example consider table 3 below.

Table 3: Truth Table for X_{1}, X_{2} and X_{3}

X_{1}	$X_{2} X_{3}=00$	$X_{2} X_{3}=01$	$X_{2} X_{3}=11$	$X_{2} X_{3}=10$
0	0	1	0	0
1	0	0	1	0

$$
\begin{gathered}
g\left(X_{1} X_{2} X_{3}\right)=\left(X_{1}+1\right)\left(X_{2}+1\right)\left(X_{3}\right)+X_{1} X_{2} X_{3}=X_{3}+X_{3} X_{1}+X_{3} X_{2}+X_{3} X_{1} X_{2}+X_{1} X_{2} X_{3} \\
\Longrightarrow g\left(X_{1} X_{2} X_{3}\right)=X_{3}+X_{1} X_{3}+X_{2} X_{3}
\end{gathered}
$$

Clearly, the degree of the monomial $X_{i 1} X_{i 2} X_{i 3} \ldots X_{i r}$ is r. The degree of a Boolean function is the largest degree of a monomial in its Reed Muller Canonical Expansion.

For $\left(X_{1}, X_{2}, \ldots X_{m}\right) \in\{0,1\}^{m}$, we have $\sum_{X} f\left(X_{1}, X_{2} \ldots X_{m}\right)=\sum_{X}\left(\sum_{e} a_{e} X^{e}\right)=$ $\sum_{e} a_{e}\left(\sum_{X} X^{e}\right)=\left\{1\right.$, iff $a_{1111}=1$ and 0 , elsewhere $\}$.

For example, $\sum_{X_{1} X_{2} X_{3}}\left(X_{3}+X_{1} X_{2}+X_{2} X_{3}\right)=\sum_{X_{1} X_{2} X_{3}} X_{3}+\sum_{X_{1} X_{2} X_{3}} X_{1} X_{2}+$ $\sum_{X_{1} X_{2} X_{3}} X_{2} X_{3}=4+2+2=0$.

