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1 Maximum Likelihood Decoding

Setting
Consider transmitting of a binary codeword over a binary input channel as

in Fig 1. Also Consider an AWGN channel as in Fig 2. Each w; is 72d. The
coding scheme employed is Binary Antipodal.

Figure 2: AWGN Channel



Let C be a binary code and let M = |C|. Let ™ be the space of received
vectors. The role of decoder is to partition y” into M regions, one for each
code word as in Fig 3 below.
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Figure 3: Received Vector Space Partitioning

If ¥ € H;, the decoder declares the estimated (decoded) codeword ¢ = ¢
where
C={c:1<i< M} (1)

Let € denote the codeword error event i.e. event of decoding to an incorrect
codeword. Then, ¢ denotes the correct decoding event.

P(e%) = Z P(&)P(°|é)



= ZP(C‘{)/ P(y1¢)1;(y)dy, where 1;(y) = {1, if y € H; and 0 elsewhere}

= / ZP P(yléi)1 ()dy]

Therefore, P(¢;) P(¢]¢;) is the contribution(for a given %) to the problem of
correct decoding if ¥ € H;. It follows that, to minimise the P(e) given by ¢
€ y", we assign iy € H; such that,

P(c) P(ylc) = P(¢;) P(yl6), i # J.

This is known as Minimum Probability of Error Decoding (MPE).

If P(¢;) = P(¢;) = 4, i.e. if the codewords are equally likely, the above
equation reduces to P(y]¢;) > P(y]¢;), which is called as the Maximum Like-
lihood Decoding.

Lemma 1 Over BSC as in Figure 1, MLD reduces to minimum distance
decoding(MDD).

Proof: Let dy(v, ¢;) = d.
P) = (1)~ = (1 — 2 (=)
Ife <05, =<1
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—> P(y]¢i) is maximized by minimizing dg (¥, ¢;)

In case of AWGN channel,

P(e) = Ty s exp(5S (4 — ciy)?).



where ¢;; is the j'h component of ¢. Thus MLD reduces to minimum Eu-
clidean distance decoding given by

n

Boly.e) =3 (i - eiy)? (2)

=1

2 Syndrome Decoding(Slepian Wolf Decod-
ing)
Consider BSC and let the code used be linear code. The rule followed in
MLD is to find ¢; such that dg (7, ¢) is minimum.
du(y, i) = {Wu(y + ¢) | ceC}
So, equivalently, we are looking for ¢; such that,
Wy(y + &) =min {Wy(y + é) | ¢; € C} = min,{Wg(2) | Z€y+C}

Here, iy + C is a coset of code C. Now having found such a 2, for some i, we
have

6=¢ =i+ 7
Hence, the decoding algorithm is as follows

(a) Given g, form ¢ + C

(b) Look for least Hamming weight vector 2 in i + C
(c)ée=vy+72

Lemma Let C be a [nk| linear code and H be its p-¢ matrix. Then, there
exists a one-to-one correspondence between the sets { i + C} and Fy %, given
by Hy € Fy.

Proof: Clearly collection of all g; + C is of size 2"7*.

Ifgi+C=4i +C

— it a=y +&

— Hgfl—l—HCE:HyZ + He;
— Hyi = Hy,



It remains to show that the mapping is H.
Hyi = Hys = H(yi+42) =0

= g+ €C

= 1=y +c,CeC

— n+C=yp+C

For example consider C[n k,d] = [4,2,2]

1 010
G=H= [0 10 1]
l.e. a self dual code
let C = {ci,c3,¢3,¢4}
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Table 1: Standard Array Decoding
al &l T al =
000011010{0101111111]00 C
0001/1011(010011110]01]C+0001
001010000111 |1101]10(C+0010

0011{10010110(1100}11|C+0011

The first column in the above table is known as the Coset Leader. Also, We

have
2. +1<dpin=2 = t.=0

Syndrome s = Hy
Decoding Technique
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Clearly, only those error patterns corresponding to coset leaders (first column
of Table 1) can be correctly decoded.



2.1 Performance of Standard Array Decoder

Let € be the actual error pattern.

.. Syndrome associated with ¢ is same as that associated with €.
Let é be the coset leader associated with syndrome s = He.

c=y+eé=c+e+e

—> Decoding is correct only if & = ¢é i.e. iff the error pattern is coset
Leader.

3 Reed Muller Codes

Reed Muller Codes are based on Boolean Functions. A Boolean function f
in binary multivariables is a mapping

X1
X

X

For example the truth table as follows is an example of Boolean Function.

Table 2: Truth Table for X;, X, and X3
X [ X X3=00] X, X5=01] X, X5=11[X,X53=10

0 0 1 1 0
1 1 1 1 1

Clearly, from Table 2, 22" boolean functions are possible with n variables
(n = 3 in Table 2). Thus there exists a one-to-one mapping from set of all
boolean functions to the set of all truth tables. i.e. given a boolean function,
the corresponding truth table can be deduced.
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Every boolean function has a unique representation as a multivariate poly-
nomial in n-binary variables over [Fy by Lagrange Interpolation as

FOX, Xa o X)) =D ) ) flar, as, ) |

al a2 am =1

=

(X@'—i-ai + 1)

This is called as the Reed Muller Canocial expansion of Boolean function.
For example consider table 3 below.

Table 3: Truth Table for X;, X, and X3

X1 | XoXs3=00|XoXs3=01|XoX35=11]XoX35=10
0 0 1 0 0
1 0 1 0

g(XlXQX‘g,) = <X1+1)(X2+1)<X3)+X1X2X3 == X3+X3X1+X3X2+X3X1X2+X1X2X3

— g(X1X2X3) = X3 -+ X1X3 —+ X2X3

Clearly, the degree of the monomial X;; X;5X;3.... X, is r. The degree of
a Boolean function is the largest degree of a monomial in its Reed Muller
Canonical Expansion.

For (X3, Xo,.... X;,) € {0,1}™, wehave ) f( X1, Xo.. X0n) =D (O, aeX®)
Yooae(d oy X)) = {1, iff a;111 = 1 and 0, elsewhere}.

For example, >y v, ¢, (X3 + X1 Xo+XoX3) = D v x, 5, X3 v, x0x5 X1X2+
2xixox; X2 Xz =4+24+2=0.



