E2 205 Error-Control Coding Lecture 10

Scribe - Johns U K

September 16, 2019

1 Maximum Likelihood Decoding

Setting

Consider transmitting of a binary codeword over a binary input channel as in Fig 1. Also Consider an AWGN channel as in Fig 2. Each w_i is *iid*. The coding scheme employed is Binary Antipodal.

Figure 1: Binary Symmetric Channel

Figure 2: AWGN Channel

Let \mathcal{C} be a binary code and let $M = |\mathcal{C}|$. Let y^n be the space of received vectors. The role of decoder is to partition y^n into M regions, one for each code word as in Fig 3 below.

Figure 3: Received Vector Space Partitioning

If $\vec{y} \in H_i$, the decoder declares the estimated (decoded) codeword $\hat{c} = \vec{c_i}$ where

$$\mathcal{C} = \{ \vec{c_i} : 1 \le i \le M \}.$$

$$\tag{1}$$

Let ε denote the codeword error event i.e. event of decoding to an incorrect codeword. Then, ε^{c} denotes the correct decoding event.

$$P(\varepsilon^c) = \sum_{i=1}^n P(\vec{c_i}) P(\varepsilon^c | \vec{c_i})$$

$$\begin{split} P(\varepsilon^{c}) &= \sum_{i=1}^{n} P(\vec{c_{i}}) P(|\vec{y} \in H_{i}||\vec{c_{i}}) \\ &= \sum_{i=1}^{n} P(\vec{c_{i}}) \int_{H_{i}} P(\vec{y}||\vec{c_{i}}) dy \\ &= \sum_{i=1}^{n} P(\vec{c_{i}}) \int_{y^{n}} P(\vec{y}||\vec{c_{i}}) \mathbb{1}_{i}(\vec{y}) dy, \text{ where } \mathbb{1}_{i}(\vec{y}) = \{1, if \ \vec{y} \in H_{i} \text{ and } 0 \text{ elsewhere} \} \\ &= \int_{y^{n}} \left[\sum_{i=1}^{n} P(\vec{c_{i}}) P(\vec{y}||\vec{c_{i}}) \mathbb{1}_{i}(\vec{y}) dy \right] \end{split}$$

Therefore, $P(\vec{c_i}) P(\vec{y}|\vec{c_i})$ is the contribution (for a given \vec{y}) to the problem of correct decoding if $\vec{y} \in H_i$. It follows that, to minimise the $P(\varepsilon)$ given by $\vec{y} \in y^n$, we assign $\vec{y} \in H_i$ such that, $P(\vec{c_i}) P(\vec{y}|\vec{c_i}) \ge P(\vec{c_j}) P(\vec{y}|\vec{c_j}), i \ne j$.

This is known as Minimum Probability of Error Decoding (MPE).

If $P(\vec{c_i}) = P(\vec{c_j}) = \frac{1}{M}$, i.e. if the codewords are equally likely, the above equation reduces to $P(\vec{y}|\vec{c_i}) \ge P(\vec{y}|\vec{c_j})$, which is called as the Maximum Like-lihood Decoding.

Lemma 1 Over BSC as in Figure 1, MLD reduces to minimum distance decoding(MDD).

<u>Proof</u>: Let $d_H(\vec{y}, \vec{c_i}) = d$.

 $\mathbf{P}(\vec{y}|\vec{c_i}) = \varepsilon^d (1-\varepsilon)^{n-d} = (1-\varepsilon)^n (\frac{\varepsilon}{1-\varepsilon})^d$

If $\varepsilon < 0.5, \frac{\varepsilon}{1-\varepsilon} < 1$

 \implies P($\vec{y} | \vec{c_i}$) is maximized by minimizing $d_H(\vec{y}, \vec{c_i})$

In case of AWGN channel,

$$P(\vec{y}|\vec{c_i}) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-1}{2\sigma^2} (y_j - c_{ij})^2),$$

where c_{ij} is the $j^t h$ component of $\vec{c_i}$. Thus MLD reduces to minimum Euclidean distance decoding given by

$$d_E^2(y, c_i) = \sum_{i=1}^n (y_i - c_{ij})^2$$
(2)

2 Syndrome Decoding(Slepian Wolf Decoding)

Consider BSC and let the code used be linear code. The rule followed in MLD is to find $\vec{c_i}$ such that $d_H(\vec{y}, \vec{c_i})$ is minimum.

$$d_H(\vec{y}, \vec{c_i}) = \{ W_H(\vec{y} + \vec{c_i}) \mid \vec{c} \in \mathcal{C} \}$$

So, equivalently, we are looking for $\vec{c_i}$ such that,

$$W_H(\vec{y} + \vec{c_i}) = \min \{ W_H(\vec{y} + \vec{c_j}) \mid \vec{c_j} \in \mathcal{C} \} = \min_z \{ W_H(\vec{z}) \mid \vec{z} \in \vec{y} + \mathcal{C} \}$$

Here, $\vec{y} + C$ is a coset of code C. Now having found such a \vec{z} , for some i, we have

$$\hat{c} = \vec{c_i} = \vec{y} + \vec{z}$$

Hence, the decoding algorithm is as follows

- (a) Given \vec{y} , form $\vec{y} + C$
- (b) Look for least Hamming weight vector \vec{z} in $\vec{y} + C$
- (c) $\hat{c} = \vec{y} + \vec{z}$

<u>Lemma</u> Let \mathcal{C} be a [n,k] linear code and H be its p-c matrix. Then, there exists a one-to-one correspondence between the sets $\{ \vec{y} + \mathcal{C} \}$ and \mathbb{F}_2^{n-k} , given by $H\vec{y} \in \mathbb{F}_2^{n-k}$.

<u>Proof:</u> Clearly collection of all $\vec{y_i} + C$ is of size 2^{n-k} .

$$\begin{array}{l} \text{If } \vec{y_1} + \mathcal{C} = \vec{y_1'} + \mathcal{C} \\ \Longrightarrow \quad \vec{y_1} + \vec{c_1} = \vec{y_1'} + \vec{c_2} \\ \Longrightarrow \quad \text{H}\vec{y_1} + \text{H}\vec{c_1} = \text{H}\vec{y_1'} + \text{H}\vec{c_2} \\ \Longrightarrow \quad \text{H}\vec{y_1} = \text{H}\vec{y_1'} \end{array}$$

It remains to show that the mapping is H.

$$H\vec{y_1} = H\vec{y_2} \implies H(\vec{y_1} + \vec{y_2}) = 0$$

 $\implies \vec{y_1} + \vec{y_2} \in \mathcal{C} \\ \implies \vec{y_1} = \vec{y_2} + \vec{c} , \vec{c} \in \mathcal{C} \\ \implies \vec{y_1} + \mathcal{C} = \vec{y_2} + \mathcal{C}$

For example consider $\mathcal{C}[n,k,d] = [4,2,2]$

$$G = H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

i.e. a self dual code

let $C = \{ \vec{c_1}, \vec{c_2}, \vec{c_3}, \vec{c_4} \}$

$$c_{1} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$
$$c_{2} = \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}$$
$$c_{3} = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$$
$$c_{4} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

Table 1: Standard Array Decoding

$\vec{c_1}^T$	$\vec{c_2}^T$	$\vec{c_3}^T$	$\vec{c_4}^T$	\vec{s}^T	
0000	$1 \ 0 \ 1 \ 0$	$0\ 1\ 0\ 1$	1111	0 0	\mathcal{C}
$0 \ 0 \ 0 \ 1$	$1 \ 0 \ 1 \ 1$	0100	1110	01	$C + 0 \ 0 \ 0 \ 1$
$0\ 0\ 1\ 0$	$1 \ 0 \ 0 \ 0$	0111	1101	$1 \ 0$	$C + 0 \ 0 \ 1 \ 0$
0011	$1 \ 0 \ 0 \ 1$	0110	$1\ 1\ 0\ 0$	11	$C + 0 \ 0 \ 1 \ 1$

The first column in the above table is known as the Coset Leader. Also, We have

$$2t_c + 1 \leqslant d_{min} = 2 \implies t_c = 0$$

Syndrome $\vec{s} = H\vec{y}$

Decoding Technique

Suppose

$$y = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$
$$Hy = \begin{bmatrix} 1\\1 \end{bmatrix}$$
$$e = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$
$$c = y + e = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$$

Clearly, only those error patterns corresponding to coset leaders (first column of Table 1) can be correctly decoded.

2.1 Performance of Standard Array Decoder

Let \vec{e} be the actual error pattern.

$$\therefore \vec{y} = \vec{c} + \vec{e} \vec{s} = \mathbf{H}\vec{y} = \mathbf{H}(\vec{c} + \vec{e}) = \mathbf{H}\vec{e}$$

 \therefore Syndrome associated with \vec{y} is same as that associated with \vec{e} . Let \hat{e} be the coset leader associated with syndrome $\vec{s} = H\vec{e}$.

$$\hat{c} = \vec{y} + \hat{e} = \vec{c} + \vec{e} + \hat{e}$$

 \implies Decoding is correct only if $\vec{e} = \hat{e}$ i.e. iff the error pattern is coset Leader.

3 Reed Muller Codes

Reed Muller Codes are based on Boolean Functions. A Boolean function f in binary multivariables is a mapping

$$f: \begin{bmatrix} X_1\\ X_2\\ \cdot\\ \cdot\\ \cdot\\ X_m \end{bmatrix} \to \mathbb{F}_2$$

For example the truth table as follows is an example of Boolean Function.

$X_1 \parallel X_2 X_3 = 0 0$		$X_2 X_3 = 0 1$	$X_2 X_3 = 1 \ 1$	$X_2 X_3 = 1 0$
0	0	1	1	0
1	1	1	1	1

Table 2: Truth Table for X_1, X_2 and X_3

Clearly, from Table 2, 2^{2^n} boolean functions are possible with n variables (n = 3 in Table 2). Thus there exists a one-to-one mapping from set of all boolean functions to the set of all truth tables. i.e. given a boolean function, the corresponding truth table can be deduced.

Every boolean function has a unique representation as a multivariate polynomial in n-binary variables over \mathbb{F}_2 by Lagrange Interpolation as

$$f(X_1, X_2, \dots, X_m) = \sum_{a1} \sum_{a2} \dots \sum_{am} f(a_1, a_2, \dots, a_m) \prod_{i=1}^m (X_i + a_i + 1)$$

This is called as the Reed Muller Canocial expansion of Boolean function. For example consider table 3 below.

Table 3: Truth Table for X_1 , X_2 and X_3								
	X_1	$X_2 X_3 = 0 0$	$X_2 X_3 = 0 1$	$X_2 X_3 = 1 \ 1$	$X_2 X_3 = 1 0$			
	0	0	1	0	0			
	1	0	0	1	0			

$$g(X_1X_2X_3) = (X_1+1)(X_2+1)(X_3) + X_1X_2X_3 = X_3 + X_3X_1 + X_3X_2 + X_3X_1X_2 + X_1X_2X_3$$
$$\implies g(X_1X_2X_3) = X_3 + X_1X_3 + X_2X_3$$

Clearly, the degree of the monomial $X_{i1}X_{i2}X_{i3}...X_{ir}$ is r. The degree of a Boolean function is the largest degree of a monomial in its Reed Muller Canonical Expansion.

For $(X_1, X_2, ..., X_m) \in \{0, 1\}^m$, we have $\sum_X f(X_1, X_2 ... X_m) = \sum_X (\sum_e a_e X^e) = \sum_e a_e(\sum_X X^e) = \{1, \text{ iff } a_{1111} = 1 \text{ and } 0, \text{ elsewhere}\}.$

For example, $\sum_{X_1X_2X_3} (X_3 + X_1X_2 + X_2X_3) = \sum_{X_1X_2X_3} X_3 + \sum_{X_1X_2X_3} X_1X_2 + \sum_{X_1X_2X_3} X_2X_3 = 4 + 2 + 2 = 0.$