E2 205 Error-Control Coding
 Lecture 11

Scribe - Puja Parmar

September 18, 2019

1 Boolean function

Definition 1 Any function defined on \mathbb{F}_{2}^{n}, taking values either 0 or 1 is called a Boolean function.

$$
f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}
$$

1.1 Lagrange Interpolation

$$
f\left(x_{1}, \ldots, x_{m}\right)=\sum_{a_{1} \cdots a_{m}} f\left(a_{1} \cdots a_{m}\right) \prod_{i=1}^{m}\left(x_{i}+a_{i}+1\right)
$$

Thus every Boolean function can be represented as a multi variable (MV) polynomial of degree $\leq m$.

$$
f\left(x_{1}, \ldots, x_{m}\right)=a_{0}+\sum_{i=1}^{m} a_{i} x_{i}+\sum_{\substack{i, j=1 \\ j>i}}^{m} a_{i j} x_{i} x_{j}+\cdots+a_{1 \cdots{ }_{m}} x_{1} x_{2} \cdots x_{m}
$$

Lagrange interpolation establishes a map from Boolean function over \mathbb{F}_{2}^{m} to a multi variable polynomial in m binary variables X_{1}, \ldots, X_{m}. The set of all Boolean functions over \mathbb{F}_{2}^{m} is a vector space of dimension 2^{m}. On the other hand, the monomials $1,\left\{x_{i}\right\}_{i=1}^{m},\left\{x_{i} x_{j}\right\}_{1 \leq i<j \leq m}, \ldots, x_{1} \ldots x_{m}$ span this space.
(Note that the map from Boolean function to multivariate polynomial is linear)

Figure 1: Mapping from Boolean function to MV polynomial

Thus the monomials form a basis for the set of all multivariate polynomials. The corresponding Boolean functions form a basis for the space of all Boolean functions.
Note that

$$
\sum_{x_{1} \cdots x_{m}} f\left(x_{1} \cdots x_{m}\right)=a_{1 \cdots m}
$$

This is because

$$
\begin{gathered}
\sum_{\substack{x_{1} \cdots x_{m} \\
\in \mathbb{F}_{2}^{m}}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}=\sum_{x_{i_{1}}} \sum_{x_{i_{2}}} \ldots \sum_{x_{i_{r}}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \sum_{x_{j}, j \notin\left\{i_{1} \ldots i_{r}\right\}} 1 \\
= \begin{cases}2^{m-r}=0(\bmod 2) & \text { if } 0 \leq r \leq m-1 \\
1 & \text { if } m=r\end{cases}
\end{gathered}
$$

Number of monomials in m binary variables $=1+m+\binom{m}{2}+\cdots+\binom{m}{m}$

$$
=2^{m}
$$

2 Reed Muller(binary) codes

Definition 2 The $r^{\text {th }}$ order Reed Muller code $R M(r, m)$ is given by:
$R M(r, m)=\left\{\left(f(\underline{a}), \underline{a} \in \mathbb{F}_{2}^{n}\right) \mid \operatorname{deg}(f) \leq r\right\}$
length of $\operatorname{RM}(r, m)=2^{m}$
dimension of $\operatorname{RM}(\mathrm{r}, \mathrm{m})=\sum_{i=0}^{r}\binom{m}{i}$
Example $1 R M(2,4)$
length $=2^{4}$
dimension $=\binom{4}{0}+\binom{4}{1}+\binom{4}{2}=11$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=a_{0}+\sum_{i=1}^{4} a_{i} x_{i}+\sum_{i=1}^{4} \sum_{j=1}^{4} a_{i_{j}} x_{i} x_{j}
$$

Theorem $1(R M(r, m))^{\perp}=R M(m-r-1, m)$
Proof:

$$
\begin{align*}
& \text { Note: } \sum_{i=0}^{m-r-1}\binom{m}{i}=\sum_{j=r+1}^{m}\binom{m}{j} \\
& \text { and } \sum_{i=0}^{m-r-1}\binom{m}{i}+\sum_{i=0}^{r}\binom{m}{i}=2^{m} \tag{1}
\end{align*}
$$

Let, $f\left(x_{1}, \ldots, x_{m}\right)$ have degree $\leq r$

$$
g\left(x_{1}, \ldots, x_{m}\right) \quad \text { have degree } \leq m-r-1
$$

Then $\left(f(\underline{a}), \underline{a} \in \mathbb{F}_{2}^{n}\right) \in R M(r, m)$

$$
\left(g(\underline{a}), \underline{a} \in \mathbb{F}_{2}^{n}\right) \in R M(m-r-1, m)
$$

Consider, $\sum_{\substack{x_{1} \ldots x_{m} \\ \in \mathbb{F}_{2}^{n}}} f\left(x_{1}, \ldots, x_{m}\right) \quad g\left(x_{1}, \ldots, x_{m}\right)=0$
degree $\leq m-r-1+r=m-1 \quad$ because $\sum_{\underline{x} \in \mathbb{F}_{2}^{n}} h\left(x_{1}, \ldots, x_{m}\right)=0$ for any Boolean function of degree $<\mathrm{m}$ (since the coefficient $a_{12 \ldots m}=0$)

Thus $\quad R M(m-r-1, m) \subseteq(R M(r, m))^{\perp}$

$$
\begin{aligned}
& \text { But, } \operatorname{dim}(R M(m-r-1, m))=\sum_{i=0}^{m-r-1}\binom{m}{i} \\
&=2^{m}-\sum_{i=0}^{r}\binom{m}{i} \quad(\text { from equation 1) } \\
& \therefore(R M(r, m))^{\perp}=R M(m-r-1, m)
\end{aligned}
$$

Example $2(R M(2,4))^{\perp}=R M(1,4)$

2.1 Minimum Distance of $\mathrm{RM}(\mathrm{r}, \mathrm{m})$

Theorem $2 d_{\min }(R M(r, m))=2^{m-r}$
Proof:
Since we are able to correct $t=2^{m-r-1}-1$ errors

$$
\begin{aligned}
d_{m i n} & \geq 2\left(2^{m-r-1}-1\right)+1 \\
& =2^{m-r}-1
\end{aligned}
$$

But the hamming weight of every code word in $\operatorname{RM}(r, m)$ is even for $r<m$

$$
\therefore d_{\min } \geq 2^{m-r}
$$

But the code word associated to $X_{1} X_{2} \ldots X_{r}$ has hamming weight $=2^{m-r}$

$$
\therefore d_{\min }=2^{m-r} \quad\left(\text { since } d_{\min }=w_{\min }\right)
$$

For the case $r=m, \operatorname{RM}(\mathrm{~m}, \mathrm{~m})=$ set of all 2^{m} tuples.

$$
\begin{aligned}
\therefore d_{\min } & =1 \\
& =2^{m-r} \quad \text { in this case as well }
\end{aligned}
$$

Example 3 Consider $R M(2,4)$
$[n, k, d]=[16,11,4]$
$f(x)=1+x_{1}+x_{2}+x_{1} x_{2}+x_{3} x_{4}$
Truth table for $f(x)$ is shown in fig:2

Figure 2: A Boolean function in 4 variables
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=a_{0}+\sum_{i=1}^{4} a_{i} x_{i}+\sum_{j>i} a_{i j} x_{i} x_{j}$
to find a_{34} we set $x_{1}=\theta_{1}, x_{2}=\theta_{2} \quad \theta_{1}, \theta_{2} \in \mathbb{F}_{2}$
By majority logic decoding

$$
\hat{a}_{34}=\sum_{x_{3} x_{4}} f\left(\theta_{1}, \theta_{2}, x_{3}, x_{4}\right)=1
$$

same way, by majority logic decoding

$$
\hat{a}_{12}=\sum_{x_{1} x_{2}} f\left(x_{1}, x_{2}, \theta_{3}, \theta_{4}\right)=1
$$

Example 4 Consider $g\left(x_{1} x_{2} x_{3} x_{4}\right)=f\left(x_{1} x_{2} x_{3} x_{4}\right)+x_{1} x_{2}+x_{3} x_{4}$ where $f\left(x_{1} x_{2} x_{3} x_{4}\right)$ is from example 3. Truth table for $g(x)$ is shown in fig:3. $g\left(x_{1} x_{2} x_{3} x_{4}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}$

$x_{1} x_{2} x_{3}^{x_{3}}$	00	01	10	11
00	1	1	1	1
01	0	0	0	0
10	0	0	0	0
11	1	1	1	1

Figure 3: A Boolean function in 4 variables
By majority logic decoding,

$$
\hat{a}_{4}=\sum_{x_{4}} g\left(\theta_{1}, \theta_{2}, \theta_{3}, x_{4}\right)=0 \quad \theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{F}_{2}^{m}
$$

