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1 Entropy

Let X be a discrete random variable having finite alphabets X and PX(x)=
p(x) be the pmf of X.

Then, the entropy H(X) of X in bits per symbol is given by

H(X) =
∑
x∈X

p(x) log
1

p(x)
= H2(X)

Hb(X) =
∑
x∈X

p(x) logb

1

p(x)
= logb(2) H2(X)

Example 1 Let X = {0, 1} and PX(x) = p(x).

Then,
H(X) , H2(p) = H2(p, (1− p))

= p log
1

p
+ (1− p) log

1

(1− p)
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Figure 1: Binary entropy function

Thus, H(X) is maximum when {0,1} are equally likely. This is in general true.

Example 2 Let X = {0, 1, 2...,M − 1}.
X has pmf p(x) and Y be uniform over X

Hence,

p(y) =
1

M
, all y ∈ X

The entropy of Y is given by

H(Y ) =
∑
y∈X

p(y) log
1

p(y)

=
M−1∑
y=0

1

M
log(M)

H(Y ) = logM

Claim: H(X) ≤ H(Y ), with equality iff p(x) = 1
M

, ∀ x ∈ X
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Proof:

H(X)−H(Y ) =
∑
x∈X

p(x) log
1

p(x)
−
∑
y∈X

p(y) log
1

p(y)

=
∑
x∈X

p(x) log
1

p(x)
−
∑
y∈X

1

M
log(M)

=
∑
x∈X

p(x) log
1

p(x)
−
∑
x∈X

p(x) log(M)

=
∑
x∈X

p(x) log
1

Mp(x)

≤
∑
x∈X

p(x)

[
1

Mp(x)
− 1

]
( see aside )

=
∑
x∈X

1

M
−
∑
x∈X

p(x)

= 1− 1 = 0

Hence, H(X) ≤ H(Y )

Equality holds iff 1
Mp(x)

= 1 , ∀ x ∈ X .

⇒ p(x) =
1

M
, ∀ x ∈ X

Aside: From the linear approximation of ln(x) it is known that

ln(x) ≤ (x− 1)

with equality if and only if x=1.
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Figure 2: Linear approximation of ln(x)

2 Conditional Entropy

The conditional entropy is a measure of the average uncertainty remaining
about random variable X after observing another random variable Y.

H(Y |X) ,
∑
(x,y)

p(x, y) log
1

p(y|x)

=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(y|x)

Example 3 Binary Symmeric Channel
The binary symmetric channel(BSC) is defined by the channel diagram shown
in fig 3.The common transition probability is denoted by ε .

H(Y |X) = PX(0)H(Y |X = 0) + PX(1)H(Y |X = 1)

= PX(0)H2(ε, 1− ε) + PX(1)H2(ε, 1− ε) = H2(ε, 1− ε)
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Figure 3: Binary symmetric channel

Note:

H(X) = E
[

log
1

P (X)

]
Consider Y as a function of X, i.e

Y = f(X)

By the expectation value rule,

E[Y ] =
∑
x∈X

f(x)p(x)

∴ H(Y |X) = E
[

log
1

P (Y |X)

]

3 Joint Entropy

The join entropy H(X,Y) is the average uncertainty of the random variables
X and Y as a whole.
(x1, x2, ...., xn) ∈ (X 1 ×X 2 × ...X n)

H(X1, X2, ...., Xn) ,
∑

(x1,x2,....,xn)

p(x1, x2, ...., xn) log
1

p(x1, x2, ...., xn)
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3.1 Chain Rule For Joint Entropy

H(X1, X2, ...., Xn) = E

[
log

1

P (X1, X2, ...., Xn)

]

= E log
1

p(X1)
∏n

i=2 p(Xi|X[i−1])

where, X[i−1] = X1, X2, ..., Xi−1.

= E
n∑

i=1

log
1

p(Xi|X[i−1])

=
n∑

i=1

E log
1

p(Xi|X[i−1])

=
n∑

i=1

H(Xi|X[i−1])

Thus, in particular

H(X, Y ) = H(X) + H(Y |X)

= H(Y ) + H(X|Y )

4 Mutual Information

The mutual information I(X;Y) is the reduction in entropy defined by:

I(X;Y ) , H(Y )−H(Y |X)

=
∑
y

p(y) log
1

p(y)
−
∑
(x,y)

p(x, y) log
1

p(x|y)

Note:

EPY

[
log

1

PY (y)

]
=
∑
y∈Y

p(y) log
1

p(y)
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=
∑
(x,y)

p(x, y) log
1

p(y)

This is the marginalisation sum over all x

Now,

I(X;Y ) = E
[

log
1

P (Y )
− log

1

P (Y |X)

]
= E

[
log

p(Y |X)

P (Y )

]
= E

[
log

P (X, Y )

P (X)P (Y )

]
= H(X)−H(X|Y ) ( from the symmetry)

∴ H(Y )−H(Y |X) = I(X;Y ) = H(X)−H(X|Y )

Example 4 Consider a binary symmetric channel with transition probability
ε.

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H2(ε, 1− ε)

≤ 1−H2(ε, 1− ε)

equality achieved iff pX(0) = pX(1) = 1/2

Claim: I(X;Y) ≥ 0

Proof:

I(X;Y ) = E
[

log
p(x, y)

p(x).p(y)

]
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−I(X;Y ) = E
[

log
p(x).p(y)

p(x, y)

]
≤ E

[
p(x)p(y)

p(x, y)
− 1

]
( from aside )

=
∑
x,y

p(x, y).p(x).p(y)

p(x, y)
−
∑
x,y

p(x.y)

= 1− 1 = 0

Hence, I(X;Y) ≥ 0

Corollary:
1.H(X|Y ) ≤ H(X)

2.H(Y |X) ≤ H(Y )

Note:

I(X;Y ) = E log
p(x, y)

p(x).p(y)

= E log
1

p(x)
+ E log

1

p(y)
− E log

1

p(x, y)

Figure 4: Venn-diagram of mutual information

I(X;Y ) = H(X) + H(Y )−H(X, Y )
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5 Conditional Mutual Information

I(X;Y |Z) , H(Y |Z)−H(Y |X,Z)

= E
[

log
P (Y |X,Z)

P (Y |Z)

]
5.1 Chain Rule of Conditional Mutual Information

I(X[n];Y ) =
n∑

i=1

I(Xi;Y |X[i−1])

Proof:

I(X[n];Y ) = E
[

log
p(X[n]|Y )

p(X[n])

]
= E

[
log

n∏
i=1

[p(Xi|Y,X[i−1])

p(Xi|X[i−1])

]]

=
n∑

i=1

E
[

log(
p(Xi|Y,X[i−1])

p(Xi|X[i−1])
)

]

=
n∑

i=1

[H(Xi|Xi−1)−H(Xi|Y,X[i−1])]

∴ I(X[n];Y ) =
n∑

i=1

I(Xi;Y |X[i−1])

6 Channel Capacity

Consider a discrete memoryless channel
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The input X consist of input symbols x1, x2, .., xn and the output Y consists
of output symbols y1, y2, ..., yn.

PY |X =
n∏

i=1

PYi|Xi
(yi|xi)

=
n∏

i=1

P (yi|xi)

The channel capacity per symbol of a DMC is defined as

C = max
p(x)

I(X;Y )

Thus, the BSC has capacity

C = 1−H2(ε, 1− ε)

The capacity has operational meaning as the largest rate R at which infor-
mation can be reliably transmitted across the channel.
Saying that one is able to transmit reliably at rate R across a DMC is equiv-
alent to saying that there exist a sequence of (n,M=2nR) codes whose asso-

ciated probability P
(n)
e of codeword error goes zero in the limit i.e ,

lim
n→∞

P (n)
e = 0

Example 5 Consider binary erasure channel shown in fig5.

Figure 5: Binary erasure channel
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Claim:
Capacity(C) = (1− ε)

Proof:
I(X;Y ) = H(Y )−H(Y |X)

H(Y |X) = H2(ε, 1− ε)

To compute H(Y), introduce the random variable Z such that

Z =

{
1, Y=E

0, else

Then,
H(Y, Z) = H(Y ) + H(Z|Y )

= H(Z) + H(Y |Z)

∴ H(Y ) = H(Z) + H(Y |Z)

= H2(ε, 1− ε) + H(Y |Z = 0)PZ(0) + H(Y |Z = 1)PZ(1)

H(Y |Z) = (1− ε)H(Y |Z = 0)

≤ (1− ε)

Select x = { 0,1 } with equal probability to get

H(Y |Z) = (1− ε)

Concluding

C = H2(ε, 1− ε) + (1− ε)−H2(ε, 1− ε)

= (1− ε)
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