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1 Entropy

Let X be a discrete random variable having finite alphabets X and Py (z)=
p(x) be the pmf of X.

Then, the entropy H(X) of X in bits per symbol is given by
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Example 1 Let X = {0,1} and Px(z) = p(x).

Then,
H(X) £ Hy(p) = Ha(p, (1 — p))
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Figure 1: Binary entropy function

Thus, H(X) is maximum when {0,1} are equally likely. This is in general true.

Example 2 Let X = {0,1,2..., M — 1}.
X has pmf p(z) and Y be uniform over X

Hence,
1
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The entropy of Y is given by
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H(Y)=logM

with equality iff p(x) = ﬁ , VeeX

Claim: H(X)<H(Y),
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Hence, H(X)< H(Y)

Equality holds iff ﬁ(r) =1,VzelX.
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Aside: From the linear approximation of In(x) it is known that

In(z) < (z —1)
with equality if and only if x=1.
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Figure 2: Linear approximation of In(x)

2 Conditional Entropy
The conditional entropy is a measure of the average uncertainty remaining
about random variable X after observing another random variable Y.
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Example 3 Binary Symmeric Channel
The binary symmetric channel(BSC) is defined by the channel diagram shown
i fig 3. The common transition probability is denoted by ¢ .

H(Y|X) = Px(0)H(Y|X =0)+ Py(L)H(Y|X = 1)
Px(O)H2(€, 1-— 6) + Px(]_)HQ(g, 1-— 8) = H2(5, 1-— 5)
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Figure 3: Binary symmetric channel

Note:

H(X) =E[log

X))

Consider Y as a function of X, i.e
Y = f(X)
By the expectation value rule,

E[Y] =) f(z)p(x)
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3 Joint Entropy

The join entropy H(X,Y) is the average uncertainty of the random variables
X and Y as a whole.
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3.1 Chain Rule For Joint Entropy

1
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Thus, in particular

H(X,Y)=H(X)+ H(Y|X)
— H(Y) + H(X|Y)

4  Mutual Information
The mutual information I(X;Y) is the reduction in entropy defined by:
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This is the marginalisation sum over all x

Now,

[ 1 1
I(X;Y) = E_logm—logml
_ wl, PYIX)
- =iy |
P(X,Y)
I P(X)P(Y)]
= H(X)—H(X|Y) ( from the symmetry)

= [E|log

H(Y) - H(Y|X)=I(X:Y) = H(X) - HX|Y)

Example 4 Consider a binary symmetric channel with transition probability
€.
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I(X;Y) = H(Y) - HY|X)
= H(Y) — Hole,1—¢)
<1— Hy(e,1—¢)
equality achieved iff px(0) = px(1) =1/2

Claim: I(X;Y) >0

Proof:
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Hence, I(X;Y) >0
Corollary:
1L.HX|Y) < H(X)
2HY|X)<H(Y)
Note:
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Figure 4: Venn-diagram of mutual information

I(X;Y)=H(X)+ H(Y) - H(X,Y)
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5 Conditional Mutual Information

I(X:Y|2) 2 HY|Z) - HY|X, Z)
P(Y|X, Z)
:E[l"g P(Y|Z) }

5.1 Chain Rule of Conditional Mutual Information

I( X V) = > I(X5 Y[ Xji)
=1

Proof:
(X lY)

I(X[n];Y) = E[log p(Xm) }
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6 Channel Capacity

Consider a discrete memoryless channel

DMC [ v d




The input X consist of input symbols x1, s, .., x, and the output Y consists
of output symbols y1, v, ..., Yn.

Pyix = [ | Pyiix. (wil:)

i=1

= H P(yi|xi)

The channel capacity per symbol of a DMC is defined as

C =maxI(X;Y)

p(z)

Thus, the BSC has capacity
C=1—Hy(e,1—¢)

The capacity has operational meaning as the largest rate R at which infor-
mation can be reliably transmitted across the channel.

Saying that one is able to transmit reliably at rate R across a DMC is equiv-
alent to saying that there exist a sequence of (n,M=2") codes whose asso-

ciated probability P™ of codeword error goes zero in the limit i.e |

lim P™ =0

n—o0

Example 5 Consider binary erasure channel shown in figh.

Figure 5: Binary erasure channel
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Claim:
Capacity(C) = (1 —¢)

Proof:
I(X;Y)=H(Y)—-H(Y|X)

H(Y|X) = Hy(e,1 —¢)
To compute H(Y), introduce the random variable Z such that

1, Y=F
Z:{>

0, else

Then,

= H(Z)+ H(Y|Z)
SH(Y)=H(Z)+ H(Y|Z)
= Hy(e,1— &)+ H(Y|Z = 0)P4(0) + H(Y|Z = 1)P,(1)
H(Y|Z) = (1—)H(Y|Z =0)
<(1-¢)

H(Y,Z)=H(Y)+ H(Z|Y)
Z

Select x = { 0,1 } with equal probability to get
HY|Z)=(1-¢)

Concluding
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