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14.1 Recap : Noisy Channel Coding Theorem

We have shown that

Pe,m ≤ exp
(
−N max

ρ,Q
(Eo (ρ,Q)− ρR)

)
Typically one chooses Q to result in I (Q,P ) = Capacity of the DMC. Then, next given this value of Q, one
chooses ρ to then minimize the RHS of the above inequality. This minimization has a graphical interpreta-
tion as discussed in the previous lecture.

Turns out ∂2Eo(ρ,Q)
∂ρ2 ≤ 0

Eo (ρ,Q) ≥ 0

E0 (ρ,Q) = 0 , ρ = 0 , ∂Eo(ρ,Q)
∂ρ |ρ=0 = I (ρ,Q)

E0 (ρ,Q) is a concave function for ρ ≥ 0

Er (R) = max
0≤ρ≤1

max
Q

[Eo (ρ,Q)− ρR]

is the random coding exponent.

Pe,m ≤ exp (−NEr (R)) , 1 ≤ m ≤M

Pe ≤ exp (−NEr (R))

Since Er (R) > 0 for R < C , this proves that using very large block lengths, reliable communication is
possible at all rates R, 0 ≤ R < C .

With Q (.) selected to make I (Q,P ) = C,

Rcr =∆
∂Eo (ρ,Q)

∂ρ
|ρ=1

the optimizing value of ρ = 1

Rcr is called critical rate and turns up in other contexts as well. It is also called the computational cut-off
rate.
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14.2 Finite blocklength bound for BSC

14.2.1 Random coding union bound

All symbols in the code book are Bern
(

1
2

)
iid.

y = c1 + z

Pr
(
error | y, c1, wH (z) = t

)
≤ probability that some other code word lies in B

(
y, t
)

Pr
(
error | y, c1, wH (z) = t

)
≤ min

{
1,

M∑
i=2

∑t
i=0

(
n
i

)
2n

}
≤ min

{
1, 2nR

t∑
i=0

(
n

i

)
2−n

}

Pr
(
error | y, c1 transmitted

)
=

(
n∑
t=0

(
n

t

)
δt (1− δ)n−t

)
min

{
1,

t∑
i=0

(
n

i

)
2−n(1−R)

}

Set for j ≥ 2
Aj = Pr

(
cj ∈ B

(
y, t
))

P

 M⋃
j=2

Aj

 ≤
 M∑
j=2

P (Aj)

ρ

(Gallager)
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Here

P

 M⋃
j=2

Aj

 ≤ min
1,

M∑
j=2

Pr (Aj)


( Yury Polyanskiy, H. Vincent Poor, Sergio Verdu, ”Channel Coding Rate in the Finite Blocklength Regime”,
IEEE Transactions on Information Theory, April 2010)

The RCU bound is an upper bound to the average probability of codeword error, averaged over the en-
semble of codes. Hence there must be some code in this ensemble having codeword error probability that is
less than or equal to this average.

Now, we will derive a lower bound to the error probability of any code.

Let C be a block code of length n containing M code words.

Figure 14.1: Space of all received vectors

Let A`,m denote the number of received vectors at hamming distance ` from codeword m that are decoded
to codeword cm, 1 ≤ m ≤M ; 0 ≤ ` ≤ n.

1− Pe = Pr (correct decision))

=
1

M

M∑
m=1

(
n∑
`=0

A`,mδ
`(1− δ)n−`

)

Pe =
1

M

M∑
m=1

n∑
`=0

((
n

`

)
−A`,m

)
δ`(1− δ)n−`

Consider the probability of choosing A`,m to minimize the RHS of above equation.

Let k be such that

M

k−1∑
i=0

(
n

i

)
+

M∑
m=1

Ak,m = 2n
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k − 1 = largest radius of the ball such that M(size of the ball) ≤ 2n

Claim: Pe is minimized by setting

A`,m =

{(
n
`

)
, 0 ≤ ` ≤ k − 1

0, k + 1 ≤ ` ≤ n
(14.1)

and choosing Ak,m such that

M

k−1∑
`=0

A`,m +

M∑
m=1

Ak,m = 2n

This is apparent by examining the above figure.

Also
M∑
m=1

n∑
k=0

Ak,m = 2n

Pe ≥
1

M

M∑
m=1

n∑
`=k+1

(
n

`

)
δ`(1− δ)n−` +

1

M

M∑
m=1

((
n

k

)
−Ak,m

)
δk(1− δ)n−k

=

n∑
`=k+1

(
n

`

)
δ`(1− δ)n−` +

(
1−

∑M
m=1Ak,m

M
(
n
k

) )(
n

k

)
δk(1− δ)n−k

=

n∑
l=k+1

(
n

`

)
δ`(1− δ)n−` + λ

(
n

k

)
δk(1− δ)n−k, where λ = 1−

∑M
m=1Ak,m

M
(
n
k

)
= (1− λ)

n∑
`=k+1

(
n

`

)
δ`(1− δ)n−` + λ

n∑
l=k

(
n

`

)
δ`(1− δ)n−`


