E2 205 Error-Control Coding Lecture 16

Robin Francis

October 7, 2019

1 Viterbi Decoding

$$
\begin{gathered}
=\sum_{t=0}^{\infty} U_{t} D^{t}+\sum_{t=0}^{\infty} U_{t-1} D^{t}+\sum_{t=0}^{\infty} U_{t-1} D^{t} \\
=U(D)\left[1+D+D^{2}\right]
\end{gathered}
$$

1.1 Polynomial Generator Matrix (PGM)

$$
U(t)=(1,1,1, \ldots \ldots, 1)
$$

Then

$$
\begin{gathered}
{\left[V^{1}(D), V^{2}(D)\right]=\frac{1}{1+D}\left[1+D^{2}, 1+D\right]} \\
=[1+D, 1] \\
W_{H}\{U(t)\}_{0}^{\infty}=\infty \\
W_{H}\left\{V^{1}(t), V^{2}(t)\right\}_{0}^{\infty}=2+1 \\
=3
\end{gathered}
$$

1.2 Catastrophic Error Propagation (CEP)

CEP is said to take place in a convolutional code, when the input has infinite hamming weight but output has finite hamming weight.
$\operatorname{Let} G(D)=\left[g_{1}(D), g_{2}(D), \ldots . ., g_{n}(D)\right] g c d\left[g_{1}(D), g_{2}(D), \ldots . ., g_{n}(D)\right]=P(D) P(D)=D^{l}[1+q(D)]$ the

	$1+\mathrm{D}^{2}$	$1+\mathrm{D}$	Quotient
$1+\mathrm{D}^{2}$	1	0	0
$1+\mathrm{D}$	0	1	$1+\mathrm{D}$

ASIDE:Euclidean Distance Algorithm

Thus the gcd of two polynomial can be expressed as a linear combination of the two polynomials.

$$
1+D=0 *\left(1+D^{2}\right)+1 *(1+D)
$$

To find gcd of

$$
\left[g_{1}(D), g_{2}(D), g_{3}(D)\right]
$$

and

$$
\sum_{i=1}^{n} a_{i}(D) g_{i}(D)=D^{l}
$$

Then

$$
\begin{gathered}
U(D)\left[g_{1}(D), g_{2}(D), \ldots ., g_{n}(D)\right]\left[\begin{array}{c}
a_{1}(D) \\
a_{2}(D) \\
\cdot \\
\cdot \\
a_{n}(D)
\end{array}\right]=U(D) \sum_{i=1}^{n} a_{i}(D) g_{i}(D) \\
=D^{l} U(D) .
\end{gathered}
$$

Hence it is not possible for input to have ∞ hamming and the output to have finite hamming weight

Theorem

To ensure that a rate $\frac{1}{n}$ convolutional code having PGM

$$
G(D)=\left[g_{1}(D), g_{2}(D), \ldots ., g_{n}(D)\right]
$$

To avoid CEP, it is necessary and sufficient that

$$
\operatorname{gcd}\left[g_{1}(D), g_{2}(D), \ldots . ., g_{n}(D)\right]=D^{l} \quad l \geq 0
$$

Example: rate $\frac{1}{n}$ convolutional code

$$
\left[\begin{array}{ccc}
1+D & 1 & 1+D \\
D & 1+D & 0
\end{array}\right]
$$

Theorem

A necessary and sufficient condition on the PGM of a general, rate $\frac{k}{n}$ convolutional encoder to avoid CEP is that

$$
\operatorname{gcd}\left[\triangle_{0}(D), \triangle_{1}(D), \ldots, \triangle_{\binom{n}{k}}(D) \quad l \geq 0\right.
$$

where

$$
\left\{\triangle_{i}(D)_{i=1}^{\binom{n}{k}}\right\}
$$

is the collection of determinants of the $\binom{n}{k}[k * k]$ submatrix.

In our example

$$
\begin{gathered}
\triangle_{1}(D)=\left[\begin{array}{cc}
1+D & 1 \\
D & 1+D
\end{array}\right]=1+D+D^{2} \\
\triangle_{2}(D)=\left[\begin{array}{cc}
1+D & 1+D \\
D & 0
\end{array}\right]=D+D^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \triangle_{2}(D)=\left[\begin{array}{cc}
1 & 1+D \\
1+D & D
\end{array}\right]=1+D^{2} \\
& g c d\left[1+D+D^{2}, D+D^{2}, 1+D^{2}\right]=1
\end{aligned}
$$

1.3 Finite State Machine

U_{t}	$\mathrm{U}_{t-1} U_{t-2}$	$\mathrm{~V}_{t}^{1} V_{T} t^{2}$
0	00	00
1	00	11
0	01	11
1	01	00
0	10	10
1	10	01
0	11	01
1	11	10

