E2 205 Error-Control Coding
 Lecture 17

Scribe - Bhawesh Anand
09 October 2019

1 Performance of Convolutional Codes

In the trellis diagram, the metric of a path is the sum of path metrics in the case of a BSC.
This also holds in the case of the AWGN.

Fig. AWGN Channel
$\mathrm{P}\left(\vec{y} \mid \vec{c}_{i}\right)=\prod_{t=0}^{N-1} \prod_{j=1}^{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-1}{2 \sigma^{2}}\left(y_{t}(j)-s_{t}(j)\right)^{2}\right)$.

So, the MLD reduces to a minimum Eulidean distance decoder.
$\min \sum_{t=0}^{N-1} \sum_{j=1}^{n}\left(y_{t}(j)-s_{t}(j)\right)^{2}$
Thus it suffices to maximize
$\sum_{t=0}^{N-1} \sum_{j=1}^{2} y_{t}(j) s_{t}(j)$ (the inner product)

The rate of the procedure remains as before with min. replaced by max.
Termination is not required in practice because the survivors at time $t+\tau$, tend to have a common prefix, up until time t , allowing code symbols pto time to be decoded by time $t+\tau$.

Consider the BSC in the form:

where $\vec{c} \in \mathcal{C}$ an $[\mathrm{n}, \mathrm{k}]$ linear code.
At the receiver let the decision regions be $\mathrm{H}_{i}, 1 \leq \mathrm{i} \leq \mathrm{M}=2^{k}$.

$\vec{y} \in \mathrm{H}_{i}$ requires that $d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right) \leq d_{H}\left(\vec{y}, \overrightarrow{c_{j}}\right)$.
Let us choose H_{i} s.t.
$\vec{y} \in \mathrm{H}_{i}$, iff $d_{H}\left(\vec{y}, \overrightarrow{c_{i}}\right) \leq d_{H}\left(\vec{y}, \overrightarrow{c_{j}}\right)$.

Standard-Array Table

Codewords $\left[\begin{array}{|c|c|c|c|}\hline 0000 & 0101 & 1010 & 1111 \\ \hline 0001 & 0100 & 1011 & 1110 \\ \hline 0010 & 0111 & 1000 & 1101 \\ \hline 0011 & 0110 & 1001 & 1100 \\ \hline\end{array}\right.$
Coset leaders

Let $E=\left([0000]^{t},[0001]^{t},[0010]^{t},[0011]^{t}\right)$ be the set of coset leaders.
$H_{0}=E\left(i^{\text {th }}\right.$ column of standard array $)$
$H_{0101}=$ column containing $0101=H_{0}+[0101]^{t}$.
$\vec{H}_{i}=\vec{H}_{0}+\vec{C}_{i}$
Suppose $\overrightarrow{0}$ was transmitted and \vec{e} was the error pattern introduced by the BSC. Suppose the decoded codeword is \vec{C}_{i}. Then the residual error often decoding equals?
Next, suppose $\overrightarrow{c_{j}}$ was transmitted and \vec{e} was again the error vector.
Then, $\vec{y}=\overrightarrow{c_{j}}+\vec{e}$
We know that, $\vec{e} \in \mathrm{H}_{i}$.
So, $\vec{e}=\overrightarrow{c_{i}}+\vec{a}, a \in \mathrm{E}$
$\therefore \vec{y}=\overrightarrow{c_{j}}+\overrightarrow{c_{i}}+\vec{a}$
$\Longrightarrow \vec{y} \in \mathrm{H} \overrightarrow{c_{i}}+\overrightarrow{c_{j}}$
\therefore the residual error pattern $=$ $\left(\overrightarrow{c_{i}}+\overrightarrow{c_{j}}\right)+\overrightarrow{c_{j}}=\overrightarrow{c_{i}}$
(independent of the transmitted codeword)
$\underline{\mathrm{c}}+\underline{\hat{c}}=\underline{u}^{T} \mathrm{G}+\underline{\hat{u}} \mathrm{G}=\left(\underline{u}^{T}+\underline{\hat{u}}\right) \mathrm{G}=\underline{\theta}$ (residual error)

Next consider the case of the AWGN channel

Suppose $\underline{c}_{i}=0$ was transmitted. $\underline{y} \in \mathrm{H}_{0}$ only.
$\underline{y}^{T}(-1)^{\underline{0}} \geq \underline{y}^{T}(-1)^{\underline{c_{i}}} \quad, \underline{c_{i}} \neq \underline{0}$
Suppose we choose our decision regions such that
$\underline{y} \in \mathrm{H}_{0}$ if $\left(\underline{y}^{T}\right)(-1)^{\underline{0}} \geq\left(\underline{y}^{T}\right)(-1)^{c_{i}} \quad \underline{c_{i}} \neq \underline{0}$
Next suppose $\underline{y} \in D_{i}$
$\therefore \underline{y}^{T}(-1)^{c_{i}} \geq \underline{y}^{T}(-1)^{c_{j}}, \underline{c_{j}} \neq \underline{c_{i}}$
$\left.\therefore\left(\underline{y} \odot(-1) \underline{c_{i}}\right)^{T}(-1)^{\underline{0}} \geq \underline{(\underline{y}} \odot(-1)^{\underline{c_{i}}}\right)^{T}(-1)^{\underline{c_{j}}}+\underline{c_{i}}$

Modified State Diagram

$\therefore\left[\begin{array}{ccc}1 & 0 & -L I \\ -L I D & 1-L I D & 0 \\ -L D & -L D & 1\end{array}\right]\left[\begin{array}{c}A_{10} \\ A_{11} \\ A_{01}\end{array}\right]=\left[\begin{array}{c}L I D^{2} \\ 0 \\ 0\end{array}\right]$
Let $T=\left[\begin{array}{ccc}1 & 0 & -L I \\ -L I D & 1-L I D & 0 \\ -L D & -L D & 1\end{array}\right]$
$\operatorname{det}(T)=1(1-L I D)-L I\left(L^{2} I D^{2}+L D(1-L I D)\right)$
$=1-L I D-L^{2} I D$
$=1-L I D(1+L)$
$\therefore \mathrm{A}_{01}=\frac{\left(L I D^{2}\right)(L D)}{1-L I D(1+L)} \quad$ where $\left|\begin{array}{cc}-L I D & 1-L I D \\ -L D & -L D\end{array}\right|=\mathrm{LD}$
$\therefore \mathrm{A}_{E N D}=\frac{\left(L I D^{2}\right)(L D)\left(L D^{2}\right)}{1-L I D(1+L)}=\frac{L^{3} I D^{5}}{1-L I D(1+L)}$
Set $\mathrm{L}=1, \mathrm{I}=1$
$\Longrightarrow \mathrm{A}_{E N D}=\frac{D^{5}}{1-2 D} \quad=\mathrm{D}^{5}\left(1+2 D+4 D^{2}+\ldots\right)$
$\mathrm{A}_{E N D}(L, I, D)=\sum_{i, j, k} a_{i, j, k} L^{i} I^{j} D^{k}$

