E2 205 Error-Control Coding Lecture 19

Scribe - Vikram Verma

October 16, 2019

1 Belief Propagation (via the Generalised Distribution Law)

Consider the computation

$$
\begin{gather*}
a(b+c)=a b+a c \tag{1}\\
\alpha(x, w)=\sum_{x, z} f(x, y, z) g(x, z) \tag{2}\\
\beta(y)=\sum_{x, w, z} f(x, y, w) g(x, z) \tag{3}
\end{gather*}
$$

Assume that w, x, y, z take on values from a common alphabet \mathscr{A} of size $|\mathscr{A}|=q$

1.1 GDL Approach to Computation

$$
\begin{aligned}
& \beta(y)=\sum_{x, w, z} f(x, y, w) g(x, z) \\
& =\sum_{x, w}\left[\sum_{z} f(x, y, w) g(x, z)\right] \\
& =\sum_{x, w} f(x, y, w) \sum_{z} g(x, z)
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{x, w} f(x, y, w) h(x) \\
=\sum_{x} h(x) \sum_{w} f(x, y, z) \\
=\sum_{x} h(x) p(x, y)
\end{gathered}
$$

Total number of computation

$$
\begin{gathered}
=q(q-1)+q^{2}(q-1)+q(2 q-1) \\
=q^{3}+2 q^{2}-2 q
\end{gathered}
$$

1.2 Marginalize The Complex Function Problem

$\{\mathbb{R},+,$.$\} field$
$\{[0, \infty),+,$.
Under 'Addition', it is Closure, Associative, Identity Element $\{0\}$ and Commutative but No Inverse exist.
Under 'Multiplication', it is closure, associative, identity element $\{1\}$, commutative and inverse exist.
This is "Sum-Product Semiring".
$\{[0, \infty)$, max,.$\}$ field
Under ' $\max ^{\prime}$ '(it is like Addition), it is closure, associative, identity element $\{0\}$ and commutative but No inverse exist.
Under 'Multiplication', it is closure, associative, identity element $\{1\}$, commutative and inverse exist.
This is "Max-Product Semiring".
$\{[-\infty, \infty)$, min, sum $\}$
Under min, it is closure, associative, identity element $\{\infty\}$ and commutative but No inverse exist.
Under sum, it is closure, associative, identity element $\{0\}$, commutative and No inverse exist.
This is "Min-Sum Semiring".

Note- $a .(b+c)=a . b+a . c$
$a \cdot(\max \{b, c\})=\max \{a . b, a . c\}$ under $\{[0, \infty), \max ,$.
$a+\min \{b, c\}=\operatorname{mina}+b, a+c$ under $\{[-\infty, \infty), \min$, sum $\}$

Definition 1 A commutative semiring is a set R,together with two binary operation called " + " and"." such that:
S1. Under + we have closure, associative, identity element, commutative
S2. Under . we have closure, associative, identity element, commutative
S3. The distribution law holds
$a .(b+c)=a . b+a . c$, where $a, b, c \in R$
$\{\{0,1\}, O R, A N D\}$
Under 'OR', it is closure, associative, identity element $\{0\}$ and commutative but No inverse exist.
Under 'AND', it is closure, associative, identity element $\{1\}$, commutative and No inverse exist.

1.3 The MPF Problem

(Marginalize a Product Function)
Setting: A Set $S=\{1,2, \ldots \mathrm{n}\}$, collection of index
A set of n variable $x_{1}, x_{2} \ldots x_{n}$
$x_{S}=\left\{x_{1}, x_{2} \ldots x_{n}\right\}$
A set of M subsets of $S, S_{j} \subseteq S$
$S_{j}=\left\{i_{1}, i_{2}, \ldots i_{\left|S_{j}\right|}\right\}$
$\Longrightarrow x_{S_{j}} \triangleq\left\{x_{i_{1}}, x_{i_{2}} \ldots x_{i_{\left|S_{j}\right|}}\right\}$
$x_{i} \in A_{i}$ the alphabet of x_{i}
$\left|A_{i}\right|=q_{i}$
$A_{S_{j}}=$ alphabet of $x_{S_{j}}$
$\left|A_{S_{j}}\right|=q_{S_{j}}$

1.4 Local Kernals

$\alpha_{j}: x_{S_{j}} \rightarrow R$ semiring, $1 \leq j \leq M$

$$
\beta\left(x_{S_{j}}\right)=\sum_{x_{S \backslash S_{j}}} \prod_{i=1}^{M} \alpha_{i}\left(x_{S_{i}}\right)
$$

Example 2 Walsh-Hadamard Transform

$$
F\left(x_{4} x_{5} x_{6}\right)=\sum_{x_{1} x_{2} x_{3}}(-1)^{\left(x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}\right)} f\left(x_{1} x_{2} x_{3}\right)
$$

$f\left(x_{1} x_{2} x_{3}\right): F_{2}^{3} \rightarrow \mathbb{F}_{2}$
$S=\{1,2, \ldots, 6\}$
Kernals are-
$S_{1}=\{1,2,3\}, \alpha_{1}\left(x_{s_{1}}\right)=\alpha_{1}\left(x_{1} x_{2} x_{3}\right)=f\left(x_{1} x_{2} x_{3}\right)$
$S_{2}=\{1,4\}, \alpha_{2}\left(x_{s_{2}}\right)=(-1)^{\left(x_{1} x_{4}\right)}$
$S_{3}=\{2,5\}, \alpha_{3}\left(x_{s_{3}}\right)=(-1)^{\left(x_{2} x_{5}\right)}$
$S_{4}=\{3,6\}, \alpha_{4}\left(x_{s_{4}}\right)=(-1)^{\left(x_{3} x_{6}\right)}$
$S_{5}=\{4,5,6\}, \alpha_{5}\left(x_{s_{5}}\right)=1$

Example 3 Maximum Likelihood Codeword Decoding of a block code (binary [7,4, 2]).
Assume transmission over BSC.

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

$s=1, d_{\text {min }}=s+1=2$
Let

$$
F_{i}\left(x_{i}\right)=\max _{\underline{x} \in \mathbb{C}, \sim x_{i}} p(\underline{y} / \underline{x})
$$

max over $\sim x_{i}$ means all variables other than x_{i}.

$$
\hat{x}_{i}=\arg \max _{a_{i}} F_{i}\left(a_{i}\right)
$$

	$x=0$	$x=1$
$F_{1}\left(x_{1}\right)$	2	8
$F_{2}\left(x_{2}\right)$	1	8
$F_{3}\left(x_{3}\right)$	8	6
$F_{4}\left(x_{4}\right)$	2	8
$F_{5}\left(x_{5}\right)$	-1	8
$F_{6}\left(x_{6}\right)$	8	4
$F_{7}\left(x_{7}\right)$	6	8

$$
\underline{\hat{x}}=1101101
$$

$$
\begin{gathered}
\chi\left(x_{1} x_{2} x_{4}\right)=1 \text { if } x_{1}+x_{2}+x_{4}=0(\bmod 2) . \\
F_{i}\left(x_{i}\right)=\max _{\sim x_{i}} p(\underline{y} / \underline{x}) \chi\left(x_{1} x_{2} x_{4}\right) \chi\left(x_{3} x_{4} x_{6}\right) \chi\left(x_{4} x_{5} x_{7}\right) \\
F_{i}\left(x_{i}\right)=\max _{\sim x_{i}} \prod_{i=1}^{7} p\left(y_{i} / x_{i}\right) \chi\left(x_{1} x_{2} x_{4}\right) \chi\left(x_{3} x_{4} x_{6}\right) \chi\left(x_{4} x_{5} x_{7}\right)
\end{gathered}
$$

$$
S=\{1,2, \ldots, 7\}
$$

$$
x_{S_{i}}=x_{i}, 1 \leq i \leq 7
$$

$$
x_{S_{8}}=x_{1} x_{2} x_{4}
$$

$$
x_{S_{9}}=x_{3} x_{4} x_{6}
$$

$$
x_{S_{10}}=x_{4} x_{5} x_{7}
$$

(This is an MPF problem in 'Max-product Semiring)

