E2 205 Error-Control Coding Lecture 2

Scribe - Biswadip Chakraborti

August 16, 2019

1 Hamming Weight

Definition 1 The Hamming weight $w_{H}(\underline{x})$ of a vector $\underline{x} \in \mathbb{F}_{2}^{n}$ is the number of non-zero elements in \underline{x}.

1.1 Properties of Hamming Weight

1. $w_{H}(\underline{x}) \geq 0$ with equality iff $\underline{x}=\underline{0}$.
2. $w_{H}(\underline{x}+\underline{y}) \leq w_{H}(\underline{x})+w_{H}(\underline{y})$ (Triangle inequality).
3. $w_{H}(\underline{x}+\underline{y})=w_{H}(\underline{x})+w_{H}(\underline{y})-2 w_{H}(\underline{x} \bigodot \underline{y})$, where $\underline{x} \bigodot \underline{y}$ is the schur product of \underline{x} and \underline{y}.

The following is an example (and verification) of the triangle inequality in \mathbb{F}_{2}^{4}.

$$
\underline{x}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] ; \underline{y}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] ; \underline{x}+\underline{y}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& w_{H}(\underline{x})=3, w_{H}(\underline{y})=3, w_{H}(\underline{x}+\underline{y})=2 \\
& w_{H}(\underline{x})+w_{H}(\underline{y})=3+3=6 \geq \underline{2}=w_{H}(\underline{x}+\underline{y}) .
\end{aligned}
$$

Figure 1: Triangular Inequality of Hamming Weight

2 Hamming Distance

Definition 2 The Hamming distance $d_{H}(\underline{x}, \underline{y})$ between two vectors $\underline{x}, \underline{y} \in \mathbb{F}_{2}^{n}$ is the number of coordinates such that $x_{i} \neq y_{i}, 1 \leq i \leq n$.

Clearly, $d_{H}(\underline{x}, \underline{y})=w_{H}(\underline{x}+\underline{y})$

2.1 Properties

1. $d_{H}(\underline{x}, \underline{y}) \geq 0$, equality hold iff $\underline{x}=\underline{y}$
2. $d_{H}(\underline{x}, \underline{y})=d_{H}(\underline{y}, \underline{x})$
3. $d_{H}(\underline{x}, \underline{y}) \leq d_{H}(\underline{x}, \underline{z})+d_{H}(\underline{z}, \underline{y})$

3 Binary Block Code

Definition 3 A binary block code \mathbb{C} of block length n is simply any subset of \mathbb{F}_{2}^{n}. The elements of \mathbb{C} are called codewords.

Figure 2: Triangular Inequality of Hamming Distance

3.1 Parameters of Binary Block code \mathbb{C}

1. Block length $=n$,
2. Size $M=|\mathbb{C}|$,
3. Rate $R=\frac{\left(\log _{2}|C|\right)}{n}$ of the code in bits per channel use,
4. The minimum distance $d_{\text {min }}(\mathbb{C})=\min \left\{d_{H}\left(\underline{c}_{1}, \underline{c}_{2}\right) \mid \underline{c_{1}}, \underline{c_{2}} \in \mathbb{C}, \underline{c_{1}} \neq \underline{c_{2}}\right\}$.

3.2 Some Examples of Block Codes

- Repetition Code :

$$
\mathbb{C}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

The parameters of repetition code are:

Figure 3: \mathbb{F}_{n}^{2}

1. $n=7$
2. $M=2$
3. $\mathrm{R}=\frac{1}{7}$ bits/channel use
4. $d_{\min }=7$

- Single Parity Check code:
$\mathbb{C}=\left\{\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{array}\right]\right\}$ such that $c_{1}+c_{2}+c_{3}+c_{4}+c_{5}+c_{6}+c_{7}=0$

1. $n=7$
2. $M=2^{6}=64$
3. $R=\frac{6}{7}$
4. $d_{\text {min }}=2$

- Hamming Code:

Figure 4: Hamming Code

$$
\mathbb{C}=\left\{\left[\begin{array}{l}
m_{0} \\
m_{1} \\
m_{2} \\
m_{3} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]\right\}
$$

1. $n=7$
2. $M=2^{4}=16$
3. $R=\frac{4}{7}$
4. $d_{\text {min }}=3$

$4\left(t_{c}, t_{d}\right)$ code

Definition $4 A\left(t_{c}, t_{d}\right)$ block code is a code \mathbb{C} of block length n having the properties that
i) any error pattern of $\leq t_{c}$ errors can be detected and corrected, ii) if the number of errors t is such that $t_{c}<t \leq t_{d}$, then the code is able to declare the presence of uncorrected error.

Lemma $5 A$ code \mathbb{C} of block length n and minimum distance $d_{\text {min }}$ is a $\left(t_{c}, t_{d}\right)$ code iff $t_{c}+t_{d}+1 \leq d_{\text {min }}$.

Proof: We will first prove the if part using a decoding algorithm.
Let $\underline{x} \in \mathbb{F}_{2}^{n}, t \geq 0$.

Figure 5: A ball of radius t centered at \underline{x}

Define $B(\underline{x}, t)=\left\{\underline{y} \in \mathbb{F}_{2}^{n} \mid d_{H}(\underline{x}, \underline{y}) \leq t\right\}$.
The proposed decoding algorithm: Let \underline{y} denote the received vector. Consider the ball $B\left(\underline{y}, t_{c}\right)$. If this ball contains a codeword $\underline{c} \in \mathbb{C}$, then we declare \underline{c} as the transmitted codeword else we declare an uncorrected error.

Figure 6: A ball of radius t_{c} centered at \underline{y}

Figure 7: Triangle Inequality

Proof of 'if' part:

case(i): Let the number of errors be $\mathrm{t} \leq t_{c}$ and $\underline{c_{0}}$ be the transmitted codeword. $\Longrightarrow d_{H}\left(\underline{y}, \underline{c_{0}}\right) \leq t_{c}$.
Suppose $d_{H}\left(\underline{y}, \underline{c_{1}}\right) \leq t_{c}$, where $\underline{c_{1}} \neq \underline{c}_{0}$ is a codeword. Then by triangle inequality $d_{H}\left(\underline{c_{0}}, \underline{c_{1}}\right) \leq 2 t_{c} \leq t_{c}+t_{d} \leq t_{c}+t_{d}+1<d_{\min }$ which is a contradiction. Hence, the ball $B\left(\underline{y}, t_{c}\right)$ contains only the transmitted codeword $\underline{c_{0}}$ and we have identified the correct codeword.
case(ii): Let the number of errors t be such that $t_{c}<t \leq t_{d}$. Let $\underline{c_{o}}$ be the transmitted codeword. $\Longrightarrow t_{c}<d_{H}\left(\underline{y}, \underline{c_{0}}\right) \leq t_{d}$.
Suppose there exists a codeword $\underline{x} \in \mathbb{C}$ such that $d_{H}(\underline{y}, \underline{x}) \leq t_{c}$. Then, by triangle inequality $d_{H}\left(\underline{c_{0}}, \underline{x}\right) \leq t_{d}+t_{c} \leq t_{d}+t_{c}+1<d_{\text {min }}$ which is a contradiction. Thus, there is no codeword in $\mathbb{B}\left(\underline{y}, \underline{t_{c}}\right)$ and the decoder will declare an uncorrectable error.

Figure 8: Triangle Inequality
Proof of 'only if' part: Suppose $d_{\min } \leq t_{c}+t_{d}$ and let $\underline{c_{1}}, \underline{c_{2}} \in \mathbb{C}$ be such that $d_{H}\left(\underline{c_{1}}, \underline{c_{2}}\right)=d_{\text {min }}$.
Find u, v such that $d_{\text {min }}=u+v, u \leq t_{c}$ and $t_{c}<v \leq t_{d}$.
Let \underline{y} be such that $d_{H}\left(\underline{y}, \underline{c_{1}}\right)=u$ and $d_{H}\left(\underline{y}, \underline{c_{2}}\right)=v$.
$\Longrightarrow d_{H}\left(\underline{y}, \underline{c_{1}}\right) \leq t_{c}, d_{H}\left(\underline{y}, \underline{c_{2}}\right) \leq t_{d}$.

Figure 9: Decoder in unresolvable dilemma
If \underline{y} is received, on the one hand, the decoder should decode to c_{1} and on the other hand, it should declare an uncorrectable error (corresponding to transmitted codewords $\underline{c_{1}}, \underline{c_{2}}$ respectively).
Clearly, no decoder will work to make this a $\left(t_{c}, t_{d}\right)$ code.

