E2 205 Error-Control Coding Lecture 2

Scribe - Biswadip Chakraborti

August 16, 2019

1 Hamming Weight

Definition 1 The Hamming weight $w_H(\underline{x})$ of a vector $\underline{x} \in \mathbb{F}_2^n$ is the number of non-zero elements in \underline{x} .

1.1 Properties of Hamming Weight

- 1. $w_H(\underline{x}) \ge 0$ with equality iff $\underline{x} = \underline{0}$.
- 2. $w_H(\underline{x} + y) \le w_H(\underline{x}) + w_H(y)$ (Triangle inequality).
- 3. $w_H(\underline{x} + \underline{y}) = w_H(\underline{x}) + w_H(\underline{y}) 2w_H(\underline{x} \odot \underline{y})$, where $\underline{x} \odot \underline{y}$ is the schur product of \underline{x} and \underline{y} .

The following is an example (and verification) of the triangle inequality in \mathbb{F}_2^4 .

$$\underline{x} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}; \underline{y} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}; \underline{x} + \underline{y} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

 $w_H(\underline{x}) = 3, w_H(\underline{y}) = 3, w_H(\underline{x} + \underline{y}) = 2$ $w_H(\underline{x}) + w_H(\underline{y}) = 3 + 3 = 6 \ge 2 = w_H(\underline{x} + \underline{y}).$

Figure 1: Triangular Inequality of Hamming Weight

2 Hamming Distance

Definition 2 The Hamming distance $d_H(\underline{x}, \underline{y})$ between two vectors $\underline{x}, \underline{y} \in \mathbb{F}_2^n$ is the number of coordinates such that $x_i \neq y_i$, $1 \leq i \leq n$.

Clearly, $d_H(\underline{x}, \underline{y}) = w_H(\underline{x} + \underline{y})$

2.1 Properties

- 1. $d_H(\underline{x}, \underline{y}) \ge 0$, equality hold iff $\underline{x} = \underline{y}$
- 2. $d_H(\underline{x}, \underline{y}) = d_H(\underline{y}, \underline{x})$
- 3. $d_H(\underline{x}, \underline{y}) \le d_H(\underline{x}, \underline{z}) + d_H(\underline{z}, \underline{y})$

3 Binary Block Code

Definition 3 A binary block code \mathbb{C} of block length n is simply any subset of \mathbb{F}_2^n . The elements of \mathbb{C} are called codewords.

Figure 2: Triangular Inequality of Hamming Distance

3.1 Parameters of Binary Block code \mathbb{C}

- 1. Block length = n,
- 2. Size $M = |\mathbb{C}|$,
- 3. Rate $R = \frac{(\log_2 |C|)}{n}$ of the code in bits per channel use,
- 4. The minimum distance $d_{min}(\mathbb{C}) = min\{d_H(\underline{c}_1, \underline{c}_2) \mid \underline{c}_1, \underline{c}_2 \in \mathbb{C}, \underline{c}_1 \neq \underline{c}_2\}.$

3.2 Some Examples of Block Codes

• Repetition Code :

$$\mathbb{C} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

The parameters of repetition code are:

Figure 3: \mathbb{F}_n^2

- 1. n = 7
- 2. M = 2
- 3. $R=\frac{1}{7}$ bits/channel use
- 4. $d_{min} = 7$

• Single Parity Check code:

$$\mathbb{C} = \left\{ \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{bmatrix} \right\} \text{ such that } c_1 + c_2 + c_3 + c_4 + c_5 + c_6 + c_7 = 0$$
1. $n = 7$
2. $M = 2^6 = 64$
3. $R = \frac{6}{7}$
4. $d_{min} = 2$

• Hamming Code:

Figure 4: Hamming Code

$$\mathbb{C} = \left\{ \begin{bmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \right\}$$

1. n = 72. $M = 2^4 = 16$ 3. $R = \frac{4}{7}$ 4. $d_{min} = 3$

4 (t_c, t_d) code

Definition 4 A (t_c, t_d) block code is a code \mathbb{C} of block length n having the properties that

i) any error pattern of $\leq t_c$ errors can be detected and corrected, ii) if the number of errors t is such that $t_c < t \leq t_d$, then the code is able to declare the presence of uncorrected error.

Lemma 5 A code \mathbb{C} of block length n and minimum distance d_{min} is a (t_c, t_d) code iff $t_c + t_d + 1 \leq d_{min}$.

Proof: We will first prove the if part using a decoding algorithm. Let $\underline{x} \in \mathbb{F}_2^n, t \ge 0$.

Figure 5: A ball of radius t centered at $\underline{\mathbf{x}}$

Define $B(\underline{x}, t) = \{ y \in \mathbb{F}_2^n \mid d_H(\underline{x}, y) \leq t \}.$

The proposed decoding algorithm: Let \underline{y} denote the received vector. Consider the ball $B(\underline{y}, t_c)$. If this ball contains a codeword $\underline{c} \in \mathbb{C}$, then we declare \underline{c} as the transmitted codeword else we declare an uncorrected error.

Figure 6: A ball of radius t_c centered at y

Figure 7: Triangle Inequality

Proof of 'if' part:

case(i): Let the number of errors be $t \leq t_c$ and $\underline{c_0}$ be the transmitted codeword. $\implies d_H(\underline{y}, \underline{c_0}) \leq t_c$.

Suppose $d_H(\underline{y}, \underline{c_1}) \leq \overline{t_c}$, where $\underline{c_1} \neq \underline{c_0}$ is a codeword. Then by triangle inequality $d_H(\underline{c_0}, \underline{c_1}) \leq 2t_c \leq t_c + t_d \leq t_c + t_d + 1 < d_{min}$ which is a contradiction. Hence, the ball $B(\underline{y}, t_c)$ contains only the transmitted codeword $\underline{c_0}$ and we have identified the correct codeword.

case(ii): Let the number of errors t be such that $t_c < t \leq t_d$. Let $\underline{c_o}$ be the transmitted codeword. $\implies t_c < d_H(\underline{y}, \underline{c_0}) \leq t_d$. Suppose there exists a codeword $\underline{x} \in \mathbb{C}$ such that $d_H(\underline{y}, \underline{x}) \leq t_c$. Then, by triangle inequality $d_H(\underline{c_0}, \underline{x}) \leq t_d + t_c \leq t_d + t_c + 1 < d_{min}$ which is a contradiction. Thus, there is no codeword in $\mathbb{B}(\underline{y}, \underline{t_c})$ and the decoder will declare an uncorrectable error.

Figure 8: Triangle Inequality

Proof of 'only if' part: Suppose $d_{min} \leq t_c + t_d$ and let $\underline{c_1}, \underline{c_2} \in \mathbb{C}$ be such that $d_H(\underline{c_1}, \underline{c_2}) = d_{min}$. Find u,v such that $d_{min} = u + v$, $u \leq t_c$ and $t_c < v \leq t_d$. Let \underline{y} be such that $d_H(\underline{y}, \underline{c_1}) = u$ and $d_H(\underline{y}, \underline{c_2}) = v$. $\implies d_H(\underline{y}, \underline{c_1}) \leq t_c, d_H(\underline{y}, \underline{c_2}) \leq t_d$.

Figure 9: Decoder in unresolvable dilemma

If <u>y</u> is received, on the one hand, the decoder should decode to $\underline{c_1}$ and on the other hand, it should declare an uncorrectable error (corresponding to transmitted codewords $\underline{c_1}, \underline{c_2}$ respectively). Clearly, no decoder will work to make this a (t_c, t_d) code.