E2 205 Error-Control Coding
 Lecture 20

Rajat Chopra

October 21, 2019

1 Belief Propagation Continued

\mathcal{X}
Example 1 Max-Likelihood decoding of [7,4,2] block code

$$
\begin{gathered}
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \\
F_{i}\left(x_{i}\right)=\max _{\widetilde{x}_{i}} \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \mathcal{X}_{123}\left(x_{1} x_{2} x_{3}\right) \mathcal{X}_{346}\left(x_{3} x_{4} x_{6}\right) \mathcal{X}_{457}\left(x_{4} x_{5} x_{7}\right)
\end{gathered}
$$

Thus, here we are operating in the max product semiring.
Example $2 M L$ code-symbol decoding the same code

$$
\begin{gathered}
p\left(x_{i} \mid \underline{y}\right) \propto p\left(x_{i}, \underline{y}\right)=\sum_{\tilde{x}_{i}} p(\underline{x}, \underline{y})=\sum_{\tilde{x}_{i}} p(\underline{x}) p(\underline{y} \mid x) \\
=\sum_{\tilde{x}_{i}} \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \mathcal{X}_{123}\left(x_{1} x_{2} x_{3}\right) \mathcal{X}_{346}\left(x_{3} x_{4} x_{6}\right) \mathcal{X}_{457}\left(x_{4} x_{5} x_{7}\right)
\end{gathered}
$$

this time we are operating in the sum-product semiring.

Figure 1:

1.1 An example of a bagesean network

see Figure 1

$$
p\left(\left\{x_{i}\right\}_{i=0}^{2},\left\{s_{i}\right\}_{i=0}^{3},\left\{y_{i}\right\}_{i=0}^{2}\right)=p\left(s_{o}\right) \prod_{i=1}^{2} p\left(u_{i}\right) p\left(s_{i+1} \mid s_{i} u_{i}\right) p\left(y_{i} \mid s_{i} u_{i}\right)
$$

The graph is called a DAG(Direct Acyclic Graph)
Example 3 Let us pretend that the bagesean network to the left represents a convolutional code of rate k / n
$s_{i}=$ state of time i
$y_{i}=n-$ tuple output at time i
$u_{i}=k$-tuple input at time i
(seefigure2)
the stable alphabet here is of size 4
ML codeword decoding of a convolutional code

$$
\begin{gathered}
\mathbb{F}_{i}\left(u_{i}\right)=\max _{\widetilde{u}_{i}} p(\underline{y} \mid \underline{u}) \propto \max _{\widetilde{u}_{i}} p(\underline{u} \mid \underline{y}) \\
=\max _{\widetilde{u}_{i}} p(\underline{y} \mid \underline{u}) \\
=\max _{\widetilde{u}_{i}} p\left(s_{o}\right) \prod_{i=0}^{2} p\left(u_{i}\right) p\left(s_{i+1} \mid s_{i} u_{i}\right) p\left(y_{i} \mid s_{i} u_{i}\right)
\end{gathered}
$$

This is once again an instance of the MPF problem in the max product semirirng

Figure 2:

2 Using the GDL to solve the MPF problem

2.1 Local Domain Graph

$$
\mathbb{F}\left(x_{4} x_{5} x_{6}\right)=\sum_{x_{1} x_{2} x_{3}}(-1)^{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}} f\left(x_{1} x_{2} x_{3}\right)
$$

Local Domains
$\{1,4\}\{2,5\}\{3,6\}\{1,2,3\}\{4,5,6\}$
The local domain graph is a completely completed graph whose nodes are in 1-1 correspondence with the local(see figure 3)
domains and the edge connecting nodes
see figure 4
weight of node $s_{i}=\left|s_{i}\right|$
weight of an egde $=s_{i} \cap s_{j}$
step1: Organise the local domains so as to form if possible, a junction tree

Figure 3:

Figure 4:

Figure 5:

2.2 Junction Tree

A junction tree (in the above context) is a tree whose nodes are in 1-1 correspondence with the local domains and whose edges are a subset of the edges of the local domain graph.
furthermore J is a juntion tree iff in the unique path leading from node i to node j , corresponding to local domain s_{i}, s_{i}, any intermediate vector(figure 5) $s_{l} \subseteq s_{j}$
$s_{k} \subseteq s_{i} \cap s_{j}$
$s_{l} \subseteq s_{i} \cap s_{j}$
it turns out that if it is possible to construct tree then the junction trace corresponds to a maximal-weight spanning tree of the local domain (bcd domain) graph
Hence the junction tree can be constructed using an algorithm for constructing maximal-weight spanning tree.

Example 4 of prism's greedy alogrithm for constructing a maximal-weight spanning tree (see figure 6)

Figure 6:

Figure 7:

2.3 Aside(tree)

A tree is a connected graph with no cycles (equvalently betwen any two nodes in the tree,there is a unique path), In every tree we have that number of nodes-number of edges $=1$ (can prove this by induction)(see figure 7)

$$
\prod_{i=1}^{7} p\left(y_{i} \mid x_{i}\right) \mathcal{X}_{124}\left(x_{1} x_{2} x_{4}\right) \mathcal{X}_{346}\left(x_{3} x_{4} x_{6}\right) \mathcal{X}_{456}\left(x_{4} x_{5} x_{6}\right)
$$

By projection of a graph (that is derived from the local domain graph by deleting edges) on to variable x_{i}, along with any ends connecting there ver-

Figure 8:
tices we label each node in the projection by x_{i}, we also label each edge by x_{i}. A little thought well reved that J (derived from the local domain graph is a junction tree iff, all the n projections associated to the n variables $\left\{x_{1}, x_{2} \ldots \ldots . x_{n}\right\}$ are connected. The node weight NW (g) of a graph is defined to be the sum of the weights of the nodes in the graph. The edge weight g is similarly, the sum of the weights of the edges of g.

2.4 Note

1. if J is a junction tree, all its n projections are tree.Hence $\mathrm{NW}(\mathrm{J})-\mathrm{FW}(\mathrm{J})=\mathrm{n}$
2. if J is a tree, but not a junction tree, then at least one of its projections will be a forest, rather than a tree. Hence in this case, we will have (NW(J)-EW(J)) greater than number of variables(n)
since this is the maximum possible edge weight, a maximal-weight spanning tree algorithm can be used to recover the junction tree, then it exists. This suggests the following approach to junction tree construction.
3. find a minimal-weight spanning tree for the local domain.
4. if this maximal -weight spanning tree satisfies $E W=N W-n$, then we have recovered a junction trees. if $E W!=N W-n$ then, it is not possible to construct a junction tree.

2.5 An additional consideration

when using prims greedy algorithm to construct a junction tree, one often runs into ties one reaches ties by selecting that additional node with minimize (figure 9)

$$
q_{s i}+q_{s j}-q_{s i \cap s i}
$$

turns out that (1) is reflection of the cost of passing a messgae from node s_{i} to node s_{j}.

Figure 9:

