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1 GDL: The Conclusion

Explaining the term Belief Propagation

Assume only objective function f4(X,) is of interest.
Here x;, x2, X3, x4 are constrained by parity check matrix H.
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where y is indicator function.



FIGURE 1: Junction tree representation of [7,4,2] code



1.1 Message Trellis

The message trellis can be a useful tool to determine the message passing schedule in

cases where it is desired to compute more than a single objective function. All nodes

will receive everyone’s message after three stages.
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Forward wave

Forward and Backward Schedules
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FIGURE 2: Trellis diagram of 1 x 2 convolutional code with G(D) = [1+D+D? 1+ D?]

Backward Schedule

B2(s2) = Y Pa(s3) Pr(ss|satio) Pryalszuz) Pr(usy) 9)
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Once forward and backward phases are completed, objective functions of ug, u;, u, ...

can be evaluated (BCJR algorithm).
BCJR algorithm is in sum product form and viterbi algorithm is in max product form.



1.2 Complexity of GDL

Complexity associated with equation 6 is
q|5iﬁsj|(q|3i\5j|(di _ 1) + (q|5i\sj| _ 1)) — q|3i|di _ q|5iﬁsj| (10)

where ¢!5i0Sil g18i\Sjl = 41Sil
Claim: Complexity of the single GDL solution to the MPF problem is given by

Y W(e) (11)

where ¥ (e) = ¢'5i + g5 — 15175 and

e is the edge in junction tree directed towards final destination point S,,.

It turns out that the complexity involved in computing the objective function at all
nodes is bounded above by 4 times the complexity of single vertex complexity.
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FIGURE 3: Node S; with d; degree




1.3 LDPC(Low Density Parity Check) Codes

Gallagar’s thesis (1961)

Rediscovered on 1996 by M Sipser and DA Spielman and on 1999 by G McKay

Ref: The capacity of low-density parity-check codes under message-passing decod-
ing, TJ. Richardson, R.L. Urbanke, IEEE Transactions on Information Theory (Volume:
47 Issue: 2, Feb 2001).
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FIGURE 4: Bipartite graph for [7,4,2] code -Tanner graph of [7,4,2] code
Let € be a [n, k] code with k, n large and rate R = % with parity check matrix of size
n— k x n. The number of entries in this p.c matrix is n(n — k) = n?(1 - R) = O(n?). Thus
arandom parity check matrix would have O(n?) non zero entries. In the case of LDPC

codes however the number of entries = O(n), hence the name low density parity check
codes.



