
E2 205 Error-Control Coding
Lecture 23

Kanishak Vaidya

October 30, 2019

LDPC Codes

Recap

• GDL Conclusion

– Explaining BP Phase

– GDL Complexity

– Decoding Convolution Codes

– Message Trellis

• LDPC Codes : Explaining the name

Today

• Rate

• Tanner Graphs

• Alphabets

• Symmetry Assumptions

• Gallager Evolution A : Density Evolution

1

1 Code Rate

• In a general linear [n, k, d] code C, the rows of parity check matrix are
linearly independent.

• But for LDPC code, the rows could be linearly dependent. Although
the rows should still span the dual code C⊥ and its null space should
be the code C.

Consider r × n Parity Check matrix H, r ≥ rank(H) = n− k

r × n , rank(H) ≤ r

dc ones per row

dv ones per column

• (dv, dc)-regular code :

– dv 1 in each column

– dc 1 in each row

To get bound on rate of the code i.e. k/n , compute number of ones in H
first column-wise and then row-wise. We get :

ndv = rdc

∴
r

n
=
dv
dc

and as n− k ≤ r

n− k
n
≤ dv
dc

=⇒ k

n
≤ 1− dv

dc

2

2 Tanner Graph

A graphical way to visualize Parity Check matrix of LDPC Codes.
Consider following Parity Check Matrix:

H =

1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1

which is (3, 6)-regular.

• The Tanner Graph for H will be a bipartite graph with Variable nodes
on one side and Check nodes on other, representing columns and rows
of H respectively. An edge between ith check node and jth variable
node exist if and only if (i, j)th element of H is 1.

Tanner Graph for H Cycle in a Tanner Graph

3

3 Definitions

Definition 1 (Path in a Tanner Graph) A path in a Tanner Graph is a
directed sequence ~e1, ~e2 . . . ~el of directed edges satisfying ~ei = (ui, u

′
i) , ~ei+1 =

(ui+1, u
′
i+1) =⇒ u′i = ui+1.

• Length of a path is number of directed edges along the path.

• Two nodes are at distance d in Tanner Graph if they are connected by
a path of length d but not by any path of length less than d.

Definition 2 (Neighbourhood) Nd
u : Neighbourhood of node u to depth

d. The induced subgraph consisting of all edges traversed by paths of length
at most d and starting from u.

• If ~e = (v, c) then the undirected neighbourhood to depth d of ~e =
Nd

v ∪Nd
c .

• The directed neighbourhood to depth d of an edge ~e = (v, c) is Nd
~e : the

induced subgraph containing all edges and nodes on paths ~e1, ~e2 . . . ~ed
starting from v , ~e1 6= ~e.

Two Principle Channel Models

Binary Symmetric Channel

• Instead of usual {0, 1} input output, it will be convenient to think
about input and outputs to be {+1,−1}.
xt = (−1)ut , ut ∈ {0, 1}. 0 ≡ +1 & 1 ≡ −1

• Channel output yt = xtzt where zt ∈ {+1,−1} and Pr(zt = −1) =
1− Pr(zt = 1) = ε

• Channel Symmetry Condition : pYt|Xt(y|x) = pZt(
y
x
) = pYt|Xt(−y| − x)

4

Binary Symmetric Channel Binary AWGN Channel

Binary Input AWGN Channel

• In this channel xt ∈ {+1,−1} and yt = xt + nt where nt ∼ N (0, σ2).

• But the channel can also be viewed as a multiplicative channel where
yt = xtzt & zt ∼ N (1, σ2).

• Channel Symmetry Condition still holds.

Distribution of channel output, given input x = +1 (red bell curve) and x = −1
(blue bell curve). Note that fY |X(y|x = +1) = fY |X(−y|x = −1) as per channel
symmetry condition

5

4 Message Passing

Alphabets

• O : Channel Output Alphabet

• M : The common alphabet employed to pass messages from variable
nodes to check nodes and vice versa.

• For discrete case

� O = {−q0,−q0 + 1, . . . , 0, 1, . . . , q0}
� M = {−q,−q + 1, . . . , 0, 1, . . . , q}

• For continuous case

� O =M = R

Message Passed

• 0th iteration : v© −→ c : Message is passed from variable node to
check node. As initially only channel output is present, the function
that maps channel output to message passed from variable to check
node is ψ

(0)
v : O −→M.

• lth iteration : It is completed in 2 steps

(i) v© ←− c : Message is passed from check nodes to variable node.

Corresponding function is ψ
(l)
c :Mdc−1 −→M

(ii) v© −→ c : Message is passed from variable nodes to check nodes.

Corresponding function is ψ
(l)
v : O ×Mdv−1 −→M

Aside

Suppose Y = g(X) where X & Y are random variable. Then

fY (y) =
fX(g−1(y))
dy
dx
|x=g−1(y)

(g could also be thought of as mapping distribution g : fX → fY)

6

So assuming ΠO as density function over alphabet O and ΠM as density
over M we have

• ψ(0)
v : ΠO → ΠM

• ψ(l)
v : ΠO×Mdv−1 → ΠM, and because of independence as ΠO×Πdv−1

M →
ΠM

• Similarly ψ
(l)
c : Πdv−1

M → ΠM

Symmetry Assumptions Pertaining to Message Passing

• At a variable node we assume

ψ(0)
v (bm) = bψ(0)

v (m), b ∈ {+1,−1}

ψ(l)
v (bm0, bm1 . . . bmdv−1) = bψ(0)

v (m0,m1 . . .mdv−1), b ∈ {+1,−1}

• At a check node

ψ(l)
c (b1m1, b2m2 . . . bdc−1mdc−1) =

(
dc−1∏
j=1

bj

)
ψ(l)
c (m1,m2 . . .mdc−1),

bj ∈ {+1,−1}∀j

Performance Evaluation

• We will evaluate performance by carrying out density evolution i.e.
estimate the number of incorrect messages passed during each iteration.

• We will assume that 1 codeword was transmitted.

Claim Under channel symmetry assumption Xt and Zt are independent.
Proof Let Z ≡ Zt , Z ≡ Xt , Y ≡ Yt.

pZ|X(z|x) = pY |X(y|x) = pY |X(xz|x) = pY |X(−xz| − x) = pZ|X(z| − x)

Distribution of Z is same for X and −X (and X ∈ {+1,−1})
∴ X and Z are independent

Claim Under channel symmetry and message passing assumptions the
expected number of incorrect messages passed on from the variable nodes to
check nodes is same on every iteration.

7

Proof Let (X1 . . . Xn) , Xj ∈ {+1,−1} be a codeword in LDPC code.

xtzt ψ
(0)
v (xtzt)

Initial map. Here ψ
(0)
v (xtzt) = xtψ

(0)
v (zt)

x1z1

x2z2

xdc−1zdc−1

...

ψ
(l)
c (x1z1 . . . xdc−1zdc−1)

= (
∏dc−1

j=1 xj)ψ
(l)
c (z1 . . . zdc−1)

= xdcψ
(l)
c (z1 . . . zdc−1)

Then for lth

iteration

∏dc−1
j=1 xj = xdc(∵ messages satisfy parity check)

So if incoming messages are multiplied by corresponding variable, then out-
put variable is also multiplied by corresponding variable.

ψ
(l)
v (ztxt, xtm1, xtm2 . . . xtmdv−1)

= xtψ
(l)
v (zt,m1,m2 . . .mdv−1)

Finally

Now, as the messages are always xt times whatever messages would have
been had the corresponding xt = 1. So we are actually comparing true value
of xt to sign of xtψ

(l)
v (zt,m1,m2 . . .mdv−1), which again is same as checking

sign of ψ
(l)
v (zt,m1,m2 . . .mdv−1). Thus the expected number of incorrect

8

messages is independent of transmitted codeword and hence, is same on
every iteration.

9

