E2 205 Error-Control Coding
 Lecture 26

Jickson K F

November 11, 2019

1 Polar Code

1.1 Channel Combining

Assumptions:

- Considering only Binary Input Discrete Memoryless Channels (BI-DMC)
- Throughout the inputs are equally likely

Figure 1: Channel Combining

Figure 2:
From previous lecture we know that

$$
\begin{aligned}
& I\left(U_{1} U_{2} ; Y_{1} Y_{2}\right)=I\left(X_{1} X_{2} ; Y_{1} Y_{2}\right) \\
&=I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) \\
&=2 I(W) \\
& \text { Also, } \\
& I\left(U_{1} ; Y_{1} Y_{2}\right)+I\left(U_{2} ; Y_{1} Y_{2} \mid U_{1}\right)=I\left(Y_{1} Y_{2} ; U_{1}\right) \\
&=I\left(Y_{1} Y_{2} U_{1} ; U_{2}\right) \\
&=I\left(W^{-}\right)+I\left(W^{+}\right) \\
& \\
& W^{(1)}\left(y_{1}^{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2}} W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right) \\
& W^{(2)}\left(y_{1}^{2} u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right) \\
& W^{(1)} \equiv W^{0} \equiv W^{-} \\
& W^{(2)} \equiv W^{1} \equiv W^{+}
\end{aligned}
$$

Let us define

$$
W_{N}^{(i)}\left(y_{1}^{m} u_{1}^{i-1} \mid u_{i}\right) \equiv \frac{1}{2^{N-1}} \sum P\left(y_{1}^{N} \mid u_{1}^{N}\right)
$$

These are called the marginal channels(the $i^{\text {th }}$ marginal channels)

$$
\begin{aligned}
P\left(y_{1}^{N} u_{1}^{i-1} \mid u_{i}\right) & =2 P\left(y_{1}^{N} u_{1}^{i}\right) \\
& =2 \sum_{u_{i+1}^{N}} P\left(y_{1}^{N} u_{1}^{N}\right) \\
& =\frac{1}{2^{N-1}} \sum_{u_{i+1}^{N}} P\left(y_{1}^{N} \mid u_{1}^{N}\right)
\end{aligned}
$$

Assuming all u_{i} are equally likely.
We have the following recursion:

$$
\begin{gathered}
N=2^{n}(\text { say }) \\
W_{N}^{(2 i-1)}\left(y_{1}^{N} u_{1}^{2 i-2} \mid u_{2 i-1}\right) \equiv \frac{1}{2^{N-1}} \sum_{u_{2 i}^{N}} P\left(y_{1}^{N} \mid u_{1}^{N}\right) \\
=\frac{1}{2} \sum_{u_{2 i}}\left\{\frac{1}{2^{\frac{N}{2}-1}} \sum_{u_{2 i+1, o}^{N}}^{N} \sum_{u_{2 i+1, e}} P\left(u_{2 i}, u_{2 i+1}^{N}, \ldots \ldots u_{N}\right\}\right. \\
\left.\left.l e t \quad u_{i, o}^{N}+u_{i, e}^{N}\right) \frac{1}{2^{\frac{N}{2}-1}} \sum_{u_{2 i+1, e}^{N}} P\left(\left.y_{\frac{N}{2}+1}^{N} \right\rvert\, u_{i, e}^{N}\right)\right\} \\
=\frac{1}{2} \sum_{u_{2 i}}\left\{\frac{1}{2^{\frac{N}{2}-1}} \sum_{V_{i+1}^{\frac{N}{2}}} P\left(\left.y_{1}^{\frac{N}{2}} \right\rvert\, V_{1}^{\frac{N}{2}}\right) \frac{1}{2^{\frac{N}{2}-1}} \sum_{X_{i+1}^{\frac{N}{2}}} P\left(\left.y_{\frac{N}{2}+1}^{N} \right\rvert\, X_{1}^{\frac{N}{2}}\right)\right\} \\
=\frac{1}{2} \sum_{u_{2 i}} W_{\frac{N}{2}}^{(i)}\left(\left.y_{1}^{\frac{N}{2}} V_{1}^{i-1} \right\rvert\, V_{i} i\right) W_{\frac{N}{2}}^{(i)}\left(\left.y_{\frac{N}{2}+1}^{N} X_{1}^{i-1} \right\rvert\, X_{i}\right) \\
=\frac{1}{2} \sum_{u_{2 i}} W_{\frac{N}{2}}^{(i)}\left(\left.y_{1}^{\frac{N}{2}} u_{1, o}^{2 i-2}+y_{1, e}^{2 i-2} \right\rvert\, u_{2 i-1}+u_{2 i}\right) W_{\frac{N}{2}}^{(i)}\left(\left.y_{\frac{N}{2}+1}^{N} y_{1, e}^{2 i-2} \right\rvert\, u_{2 i}\right)
\end{gathered}
$$

1.2 Fundamental Channel Recursion

$$
P\left(y_{1}^{N} \mid u_{1}^{N}\right)=\underbrace{P\left(\left.y_{1}^{\frac{N}{2}} \right\rvert\, u_{1, o}^{N}+y_{1, e}^{N}\right)}_{W_{N / 2} \text { Channel }} \underbrace{P\left(\left.y_{\frac{N}{2}+1}^{N} \right\rvert\, u_{1, e}^{N}\right)}_{W_{N / 2} \text { Channel }}
$$

Similarily, one can show that,
$W_{N}^{2 i}\left(y_{1}^{N} y_{1}^{2 i-1} \mid u_{2 i}\right)=\frac{1}{2} W_{\frac{N}{2}}\left(\left.y_{1}^{\frac{N}{2}} u_{1, o}^{2 i-2}+u_{1, e}^{2 i-2} \right\rvert\, u_{2 i-1}+u_{2 i}\right) W_{\frac{N}{2}}\left(\left.y_{\frac{N}{2}+1}^{N} u_{1, e}^{2 i-2} \right\rvert\, u_{2 i}\right)$

Figure 3:

