E2 205 Error-Control Coding Lecture 5

Scribe: Krishnan Namboodiri K K

August 26, 2019

Note: Subspaces and Subgroups

a) Let $(V,+)$ be a group and $W \subseteq V$. Then W is a subgroup of V if and only if $x-y \in W, \forall x, y \in W$.
b) Suppose $(V,+, \mathbb{F}, \cdot)$ is a vector space. Then $W \subseteq V$ is a subspace of V if and only if $\underline{x}+c \underline{y} \in W, \forall \underline{x}, \underline{y} \in W$ and $c \in \mathbb{F}$.

Consider the case where $V=\mathbb{F}_{2}^{n}$ and $\mathbb{F}=\mathbb{F}_{2}$. Then $W \subseteq \mathbb{F}_{2}^{n}$ is a subgroup of V if and only if $\underline{x}+\underline{y} \in W, \forall \underline{x}, \underline{y} \in W$.
On the other hand, $\bar{W} \subseteq \mathbb{F}_{2}^{n}$ is a subspace of $\left(\mathbb{F}_{2}^{n},+, \mathbb{F}_{2}, \cdot\right)$ if and only if $\underline{x}+y \in W$. Thus for the case $V=\mathbb{F}_{2}^{n}, \mathbb{F}=\mathbb{F}_{2}$, a subgroup of $\left(\mathbb{F}_{2}^{n},+\right)$ is also a subspace of $\left(\mathbb{F}_{2}^{n},+, \mathbb{F}_{2}, \cdot\right)$ and vice versa.

1 Column space, Row space and Nullspace

Let $A \in \mathbb{F}^{m \times n}$.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}^{t} \\
a_{2}^{t} \\
\vdots \\
a_{m}^{t}
\end{array}\right] \quad \text { where } a_{i}=\left[\begin{array}{c}
a_{i 1} \\
a_{i 2} \\
\vdots \\
a_{i n}
\end{array}\right]
$$

Definition 1 Row space of A is defined as, $\operatorname{Row}(A)=\left\{\sum_{j=1}^{m} c_{j} a_{j}^{t} \mid c_{j} \in \mathbb{F}\right\}$.

That is, every element in the row space of a matrix can be written as some linear combination of the rows of that matrix.
Similarly, A can be written as

$$
A=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right] \quad \text { where } b_{i}=\left[\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right]
$$

Then,
Definition 2 Column space of A is defined as, $\operatorname{Col}(A)=\left\{\sum_{j=1}^{n} c_{j} \underline{b_{j}} \mid c_{j} \in\right.$ $\mathbb{F}\}$.
$\operatorname{Col}(A)$ lies in the span of the columns of A.
Exercise: Verify that $\operatorname{Row}(A)$ is a subspace of \mathbb{F}^{n}. Also, verify $\operatorname{Col}(A)$ is a subspace of \mathbb{F}^{m}.
Let $A \in \mathbb{F}^{m \times n}$ and $\underline{p}, \underline{q} \in \operatorname{Col}(A)$.
That means, there exist two elements $\underline{x}, \underline{y} \in \mathbb{F}^{n}$ such that $A \underline{x}=\underline{p}$ and $A \underline{y}=\underline{q}$.
And, $\underline{p}+c \underline{q}=A \underline{x}+c A \underline{y}=A(\underline{x}+c \underline{y})$ for any $c \in \mathbb{F}$.
$\Rightarrow \underline{p}+c \underline{\in} \in \operatorname{Col}(A) \Rightarrow \overline{\operatorname{Col}}(A)$ is a subspace of \mathbb{F}^{m}.
$\operatorname{Row}(A)$ is the $\operatorname{Col}\left(A^{t}\right)$. So, similarly we can show that $\operatorname{Row}(A)$ is a subspace of \mathbb{F}^{n}.

Definition 3 Nullspace of A is defined as, $\mathcal{N}(A)=\left\{\underline{x} \in \mathbb{F}^{n} \mid A \underline{x}=0\right\}$.
If $\underline{x}, \underline{y} \in \mathcal{N}(A)$, then $A \underline{x}=0, A \underline{y}=0$. Then, $A(\underline{x}+c \underline{y})=A \underline{x}+c A \underline{y}=$ $0+0=\overline{0} \Rightarrow \underline{x}+c \underline{y} \in \mathcal{N}(A)$. Which means, $\mathcal{N}(A)$ is a subspace of \mathbb{F}^{n}.

2 Linear Codes

A binary linear code \mathscr{C} of block length n is any subspace of \mathbb{F}_{2}^{n} (Thus a binary linear code \mathscr{C} may also be viewed as a subgroup of \mathbb{F}_{2}^{n} and for this reason, binary linear codes are sometimes referred as group codes).

Examples

i) Let \mathscr{C} be the simple parity check code of block length $n=7$. Then \mathscr{C} is a linear code because $\underline{c} \in \mathscr{C}$ if and only if $\underline{1}^{t} \underline{c}=0 \Leftrightarrow \sum_{t=1}^{7} c_{t}=0$
ie, if $\underline{c_{1}}, \underline{c_{2}} \in \mathscr{C}$, then $\underline{1}^{t} \underline{c_{1}}=0, \underline{1}^{t} \underline{c_{2}}=0$
$\underline{1}^{t}\left(\underline{c_{1}}+\underline{c_{2}}\right)=\underline{1}^{t}{\underline{c_{1}}}+\underline{1}^{t} \underline{c_{2}}=0+0=0$
ii) The repetition code of block length $n=7$ is also a linear code. $\mathscr{C}=$ $\{\underline{0}, \underline{1}\}$
iii) The Hamming code, $n=7$

For a code word $\underline{c}=\left[c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right]^{t}$ in Hamming code, \mathscr{C}, in

Figure 1: Hamming code: Even parity in all the three circles
each circle, even parity has to be maintained. So we can create a matrix H such that every code word will lie in the nullspace of H.

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

For every codeword $\underline{c} \in \mathscr{C}, H \underline{c}=0, \mathrm{H}$ is called the parity check matrix for Hamming code.
Let $\underline{c_{1}}$ and $\underline{c_{2}}$ are codewords in \mathscr{C}. Then
$H\left(\underline{c_{1}}+\underline{c_{2}}\right)=H \underline{c_{1}}+H \underline{c_{2}}=0+0=0 \Rightarrow \mathscr{C}$ is linear.

2.1 Linear independence, Basis and Dimension

Definition 4 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space. Then $\underline{\alpha_{1}}, \underline{\alpha_{2}}, \ldots, \underline{\alpha_{n}} \in V$ are said to be linearly independent if and only if $\sum_{j=1}^{n} c_{j} \underline{\alpha_{j}}=\underline{0}$ is possible only with $c_{j}=0, \forall j$.

Examples

i) Characterize all linearly independent subsets of \mathbb{R}^{3}.

Any three non-coplanar vectors are linearly independent in \mathbb{R}^{3}. We cannot find more than 3 independent vectors in \mathbb{R}^{3}.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { are independent }
$$

ii) Let $A \in \mathbb{R}^{4 \times 5}$. Which rows of A are linearly independent? Which columns of A are linearly independent?

$$
A=\left[\begin{array}{lllll}
1 & 0 & 2 & 1 & 3 \\
0 & 0 & 6 & 1 & 7 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Ans: The given matrix A is in row echelon form. The first non-zero entry in each row(in echelon form) is called a pivot. Rows containing pivots are linearly independent. Columns containing pivots are also linearly independent. So in matrix $A, 3$ linearly independent rows are there(first, second and third rows are linearly independent). Similarly, there are 3 linearly independent columns as well(First, third/fourth and fifth columns are linearly independent).
iii) Consider the vector space, $V=\mathbb{F}[X]$, the collection of all the polynomials over the field \mathbb{F}. Verify, $\alpha_{1}(x)=x+a, \alpha_{2}(x)=x^{2}+b x+c$, $\alpha_{3}(x)=x^{5}$ are linearly independent.
Ans: Take any three elements $c_{1}, c_{2}, c_{3} \in \mathbb{F}$.
$c_{1} \alpha_{1}(x)+c_{2} \alpha_{2}(x)+c_{3} \alpha_{3}(x)=0$
$c_{1}(x+a)+c_{2}\left(x^{2}+b x+c\right)+c_{3}\left(x^{5}\right)=0 \Rightarrow c_{3}=0, c_{2}=0, c_{1}=0$ Therefore, $\alpha_{1}(x), \alpha_{2}(x)$ and $\alpha_{3}(x)$ are linearly independent.

2.1.1 Span of a set

Definition $5 A$ set $\left\{\underline{\alpha_{1}}, \underline{\alpha_{2}}, \ldots, \underline{\alpha_{n}}\right\} \subseteq V$ is said to span V if $V=\left\{\sum_{j=1}^{n} c_{j} \underline{\alpha_{j}} \mid c_{j} \in \overline{\mathbb{F}}\right\}$
And it is written as $V \triangleq<\underline{\alpha_{1}}, \underline{\alpha_{2}}, \ldots, \underline{\alpha_{n}}>$ (Notation)

Examples

i) $\alpha_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \alpha_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Then $<\alpha_{1}, \alpha_{2}>=\mathbb{R}^{2}$
ii) What is the space over \mathbb{F}_{2}, spanned by

$$
A=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Ans: All the elements in the set are of even parity. ie, for each $\alpha_{i} \in$ $A, \underline{1}^{t} \alpha_{i}=0$. And the span of these elements are single parity check code with $n=7$.

2.1.2 Basis

Definition 6 A basis B for a vector space $(V,+, \mathbb{F}, \cdot)$ is a collection of vectors that

1) are linearly independent
2) $\operatorname{span} V$

Examples

i)

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { is a basis for } \mathbb{R}^{3} .
$$

Infact, any three non-coplanar vectors in \mathbb{R}^{3} can be a basis for \mathbb{R}^{3}. So, it is important to note that, basis for any space is not a unique set.
ii) Conisder the space of all polynomials, $(\mathbb{F}[X],+, \mathbb{F}, \cdot)$.

The set $A=\left\{1, X, X^{2}, \ldots\right\}$ is a basis for $\mathbb{F}[X]$. But, the cardinality of the basis is not finite.

A vector space is said to be finite dimensional if it has a basis consisting of a finite number of elements.
Let V be a finite dimensional vector space having basis, $B=\left\{\underline{\alpha_{1}}, \underline{\alpha_{2}}, \ldots, \underline{\alpha_{n}}\right\}$. Then,
a) Any collection of $m>n$ vectors drawn from V is linearly dependent.
b) Any collection of $m<n$ vectors from B cannot span V.

It follows that if V is finite dimensional, any two bases for V have the same size.
The common size of a basis for a finite dimensional vector space V is called the dimension of V.

