# E2 205 Error-Control Coding Lecture 6

#### Sanjhi Gupta

August 28, 2019

## 1 Linear Independence

Let  $(V,+,\mathbb{F},.)$  be a vector space. Let  $A = \{\underline{\alpha}_1, \underline{\alpha}_2, \ldots,.\}$  be a (possibly infinite) set of vectors drawn from V.

By "a Linear Combination of Vectors from A" we mean terms of the form:

$$\sum_{j=0}^{n} c_{i_j} \underline{\alpha}_{i_j}, \quad c_{i_j} \in \mathbb{F}, \ j = 1, 2, \dots, n, \ n \ge 1 \text{ is an integer.}$$

We say that A is a linearly independent set if for any finite collection

$$\{\underline{\alpha}_{i_j} \in A \mid j = 1, 2, \dots, n\},\$$

we have that

$$\sum_{i=0}^{n} c_{i_j} \underline{\alpha}_{i_j} = 0 \quad \text{iff } c_{i_j} = 0 \text{ for all } j = 1, 2, \dots, n.$$

We say that A spans V, if given a vector  $\underline{v}\in V$ , there exist  $\{\underline{\alpha}_{i_j}\in A\mid j=1,2...n\}$  for some integer  $n\geq 1$  such that

$$\underline{v} = \sum_{j=1}^{n} c_{ij} \underline{\alpha}_{ij}.$$

The space spanned by A is the set

$$\left\{\sum_{j=0}^{n} c_{i_j}\underline{\alpha}_{i_j} \mid c_{i_j} \in \mathbb{F} , \ j = 1, 2, \dots, n, \ \underline{\alpha}_{i_j} \in A\right\}$$

**Example 1** Consider the vector space  $(\mathbb{F}[X], +, \mathbb{F}, .)$  and set  $A = \{1, x, x^2, ....\}$  then

- the elements of set A are linearly independent,
- the elements of set A span  $\mathbb{F}[X]$ .

## 2 Basis

**Definition 2** A basis B for a vector space  $(V, +, \mathbb{F}, .)$  is a collection of vectors  $\{\underline{\alpha}_1, \underline{\alpha}_2, ...\}$  such that:

- 1. the set is a linearly independent set,
- 2. the set spans the vector space V.

#### 2.1 Does every vector space have a basis?

1. If V is finitely generated, i.e, V is of the form

$$V = < \underline{r}_1, \ \underline{r}_2 \ \dots \ \underline{r}_m >,$$

then this is clearly a yes.

2. In the general case, the answer is still yes but the proof relies upon Zorn's Lemma which is equivalent to the Axiom of Choice.

**Lemma 3** In our setting, Zorn's Lemma tells us that if T is a set, A is a collection of subsets of T and if for every chain of subset

$$S_1 \subseteq S_2 \subseteq S_3 \dots \subseteq S_m \dots,$$

the union  $\bigcup_{j=1}^{\infty} S_j \in \mathcal{A}$ , then T contains a maximal subset that is not contained in any other subset.

Claim 4 Every vector space has a basis.

**Proof:** Let T be the vector space V,  $\mathcal{A}$  be the collection of all linearly independent subsets  $S_i$  of V. Then for every chain

$$S_1 \subseteq S_2 \subseteq S_3 \dots \subseteq S_m \dots,$$

the union  $\bigcup_{j=1}^{\infty} S_j \in \mathcal{A}$ . Thus T has a maximal linearly independent subset B.

Claim 5 B is a basis of V.

**Proof:** Clearly *B* is a linearly independent set. Now it remains to show that *B* spans *V*. Suppose it does not span *V*. Let  $\underline{x} \in V$  and  $\underline{x} \notin \langle B \rangle$ . This implies that  $B \cup \{\underline{x}\}$  set contradicts that *B* is the maximal linearly independent subset. Hence *B* is the basis for *V*.

However, it is hard to construct a basis in general.

**Example 6** Vector space  $(\mathbb{R}^{\infty}, +, \mathbb{R}, .)$ .  $\underline{x} \in \mathbb{R}^{\infty} \Rightarrow \underline{x} = (x_1, x_2, ..., x_n, ...)$ . This is an  $\infty$ -dimensional space.

## **3** Finite dimensional vector space

**Definition 7** A vector space is said to be finite dimensional if it contains a basis consisting of a finite number of elements.

**Theorem 8** Let  $(V, +, \mathbb{F}, .)$  be a finite dimensional vector space. Then any two basis for V must contain the same number of elements.

The proof will make use of following two lemmas.

**Lemma 9** If a vector space V has a basis consisting of m elements, then any collection of n > m elements is a linearly dependent set.

**Lemma 10** If a vector space V has a basis consisting of n elements, then any collection of m < n elements cannot span the space.

From these two lemmas, it follows that a basis is simultaneously:

- 1. a maximal linearly independent set
- 2. a minimal spanning set

**Proof(Theorem 8)**: Let  $\{\underline{\alpha}_1, \underline{\alpha}_2, \dots, \underline{\alpha}_m\} = \{\underline{\beta}_1, \underline{\beta}_2, \dots, \underline{\beta}_n\}$  be two basis for the vector space V. Since  $\{\underline{\alpha}_1, \underline{\alpha}_2, \dots, \underline{\alpha}_m\}$  form a basis and the set  $\{\underline{\beta}_1, \underline{\beta}_2, \dots, \underline{\beta}_n\}$  is a linearly independent set, it follows that  $n \leq m$ . Also, since  $\{\underline{\alpha}_1, \underline{\alpha}_2, \dots, \underline{\alpha}_m\}$  form a basis and the set  $\{\underline{\beta}_1, \underline{\beta}_2, \dots, \underline{\beta}_n\}$  span the vector space V, it follows that  $n \geq m$ .  $\therefore n = m$  if both are basis.

#### 3.1 Dimension

**Definition 11** The dimension k of a finite dimensional vector space  $(V, +, \mathbb{F}, .)$  is the number of elements in any basis for the vector space.

#### 3.2 Dimension of a Linear Code

**Definition 12** The dimension of a binary linear code C of block length n is its dimension when viewed as a subspace of  $(\mathbb{F}_2^n, +, \mathbb{F}, .)$ .

# 4 Notation of Linear Code

A linear code is characterised by three parameters  $[n, k, d_{min}]$  where :

- \* n is the block length,
- \* k is the dimension,
- \*  $d_{min}$  is the minimum Hamming distance between any two code words.

Therefore, Size of a linear code =  $2^k$ , Rate of a linear code =  $\frac{\log_2^{2^k}}{n} = \frac{k}{n}$ .

**Example 13** Single Parity Check Code, n=7

$$[n, k, d_{min}] = [7, 6, 2]$$

**Example 14** Repetition Code, n=7

$$[n, k, d_{min}] = [7, 1, 7]$$

**Example 15** Hamming Code, n=7

$$[n, k, d_{min}] = [7, 4, 3]$$

## 5 Generator Matrix

**Definition 16** Let C be an [n,k] binary code. Then a generator matrix G to C is any  $(k \times n)$  matrix whose rows form a basis for C.

$$G = \begin{bmatrix} \underline{g}_1^t \\ \underline{g}_2^t \\ \vdots \\ \vdots \\ \underline{g}_k^t \end{bmatrix}$$

where  $\{\underline{g}_1, \ \underline{g}_2, \ . \ .\underline{g}_k\}$  are a basis.

Note

- 1. A code can in general, have more than one generator matrix.
- 2. C is the rowspace of G.

**Example 17** For single parity check code, generator matrix can be given by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

**Example 18** For repetition code, generator matrix can be given by:

 $G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$ 

**Example 19** For Hamming code, generator matrix can be given by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

# 6 Dual Code

**Definition 20** The dual  $\mathcal{C}^{\perp}$  of an [n,k] binary code  $\mathcal{C}$  is the set :

$$\mathcal{C}^{\perp} = \{ y \mid \underline{x}^t y = 0, \quad all \ \underline{x} \in \mathcal{C} \}$$

Theorem 21 If G =



is any  $(k \times n)$  generator matrix for C, then the nullspace of generator matrix is precisely the dual code, *i.e.*,  $C^{\perp} = \eta(G)$ .

**Proof:** Clearly, from the definition of the dual code, it follows that if  $y \in C^{\perp}$ 

$$\Rightarrow \underline{g}_{j}^{t} \underline{y} = \underline{0} \quad , \ all \ 1 \le j \le k$$
$$\therefore \underline{y} \in \eta(G)$$
$$\Rightarrow \mathcal{C}^{\perp} \subseteq \eta(G) \tag{1}$$

Next suppose  $\underline{\mathbf{y}} \in \eta(G)$ 

$$\Rightarrow \underline{g}_j^t \underline{y} = \underline{0} \quad , \ all \ 1 \le j \le k$$

If  $\underline{x}$  is a codeword of  $\mathcal{C}$ , then  $\underline{x} = \sum_{j=1}^{k} m_j \underline{g}_j$ ,  $m_j \in \mathbb{F}_2$ .

$$\Rightarrow (\sum_{j=1}^{k} m_{j} \underline{g}_{j}^{t}) \underline{y} = \underline{0}$$
  
$$\Rightarrow \underline{x}^{t} \underline{y} = \underline{0} \quad , \text{ for all } \underline{x} \in \mathcal{C}$$
  
$$\Rightarrow \underline{y} \in \mathcal{C}^{\perp}$$
  
$$\Rightarrow \eta(G) \subseteq \mathcal{C}^{\perp}$$
(2)

Therefore from equation (1) and (2)  $\eta(G) = \mathcal{C}^{\perp}$ 

# 7 Parity Check Matrix

**Definition 22** A parity check matrix for an [n, k] linear code C is any generator matrix for  $C^{\perp}$ 

**Theorem 23** Let H be a parity check matrix for C, then  $C = \eta(H)$ .

Proof: Let H =

Also

$$\begin{bmatrix} \underline{h}_1^t \\ \underline{h}_2^t \\ \vdots \\ \vdots \\ \underline{h}_{n-k}^t \end{bmatrix}$$

Let  $y \in C$ , then clearly from the definition of parity check matrix

$$\Rightarrow \underline{h}_{j}^{t} \underline{y} = \underline{0}$$
$$\therefore \underline{y} \in \eta(H)$$
$$\Rightarrow \mathcal{C} \subseteq \eta(H)$$
$$dim(\mathcal{C}) = k$$

$$dim(\eta(H)) = n - (n - k) = k$$

$$\therefore \mathcal{C} = \eta(H)$$

**Aside**: Let A be any matrix, U is the row reduced echelon form of A. For example,

$$U = \begin{bmatrix} 1 & 0 & 2 & 1 & 3 \\ 0 & 0 & 6 & 1 & 7 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

It follows that dimension of row space of A is equal to the dimension of column space of A which is further equal to the number of pivots in the row reduced echelon form U of A.

dim(Row Space of A)=dim(Column Space of A)=Number of pivots in U The common dimension is called the rank of A.

**Theorem 24** Fundamental Theorem of Linear Algebra If A is an  $(m \times n)$  matrix, then rank(A) + dim(nullspace(A)) = n, where n is the number of columns of A.

**Corollary 25** The dual of the dual is the code itself, i.e.,  $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$ .

- 1. (Repetition code)<sup> $\perp$ </sup> = (Single Parity Check Code)
- 2. (Single Parity Check Code)<sup> $\perp$ </sup> = (Repetition code)

**Theorem 26** Let H be a  $(n - k \times n)$  matrix such that

- 1. rank(H) = n-k,
- 2.  $\eta(H) = \mathcal{C},$

then H is a parity check matrix for C.

**Proof:** Consider the equation

$$\begin{bmatrix} \underline{h}_{1}^{t} \\ \underline{h}_{2}^{t} \\ \vdots \\ \vdots \\ \underline{h}_{n-k}^{t} \end{bmatrix} [\underline{x}] = \underline{0}$$

We know that

$$\underline{h}_{j}^{t}\underline{x} = \underline{0} \Rightarrow \underline{y}_{j}^{t}\underline{x} = \underline{0} \quad , \quad all \ x \in \mathcal{C} \ , \quad \underline{y} \in RowSpace(H)$$

Clearly by the definition of the dual code

$$\Rightarrow RowSpace(H) \subseteq \mathcal{C}^{\perp}$$

But on the other hand, since the matrix H has rank = n-k, it follows that these vectors actually span the dual code and therefore the row space of H matrix is dual code.

dim(RowSpace(H)) = n - k $dim(\mathcal{C}^{\perp}) = dim(\eta(G)) = n - k$  $\therefore RowSpace(H) = \mathcal{C}^{\perp}$ 

So, it follows that H is a generator matrix for  $\mathcal{C}^{\perp}$ . H is a parity check matrix for  $\mathcal{C}$ .