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1 Linear Independence

Let (V,+,F,.) be a vector space. Let A = {α1, α2, . . . . . . } be a (possibly
infinite) set of vectors drawn from V.
By ”a Linear Combination of Vectors from A” we mean terms of the form:

n∑
j=0

cijαij
, cij ∈ F, j = 1, 2, . . . , n, n ≥ 1 is an integer.

We say that A is a linearly independent set if for any finite collection

{αij
∈ A | j = 1, 2, . . . , n},

we have that
n∑

i=0

cijαij
= 0 iff cij = 0 for all j = 1, 2, . . . , n.

We say that A spans V, if given a vector v ∈ V , there exist {αij
∈ A | j =

1, 2...n} for some integer n ≥ 1 such that

v =
n∑

j=1

cijαij
.

The space spanned by A is the set{ n∑
j=0

cijαij
| cij ∈ F , j = 1, 2, . . . , n, αij ∈ A

}
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Example 1 Consider the vector space (F[X],+,F, .) and set A = {1, x, x2.....}
then

• the elements of set A are linearly independent,

• the elements of set A span F[X].

2 Basis

Definition 2 A basis B for a vector space (V,+,F,.) is a collection of vectors
{α1, α2, . . . } such that:

1. the set is a linearly independent set,

2. the set spans the vector space V.

2.1 Does every vector space have a basis?

1. If V is finitely generated, i.e, V is of the form

V =< r1, r2 ..... rm >,

then this is clearly a yes.

2. In the general case, the answer is still yes but the proof relies upon
Zorn’s Lemma which is equivalent to the Axiom of Choice.

Lemma 3 In our setting, Zorn’s Lemma tells us that if T is a set, A is a
collection of subsets of T and if for every chain of subset

S1 ⊆ S2 ⊆ S3...... ⊆ Sm....,

the union ∪∞j=1Sj ∈ A , then T contains a maximal subset that is not con-
tained in any other subset.

Claim 4 Every vector space has a basis.

Proof: Let T be the vector space V , A be the collection of all linearly
independent subsets Sj of V . Then for every chain

S1 ⊆ S2 ⊆ S3...... ⊆ Sm....,

the union ∪∞j=1Sj ∈ A. Thus T has a maximal linearly independent subset
B.
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Claim 5 B is a basis of V.

Proof: Clearly B is a linearly independent set. Now it remains to show that
B spans V . Suppose it does not span V .
Let x ∈ V and x /∈ <B>.
This implies that B ∪ {x} set contradicts that B is the maximal linearly
independent subset. Hence B is the basis for V .

However, it is hard to construct a basis in general.

Example 6 Vector space (R∞,+,R,.).
x ∈ R∞ ⇒ x = (x1, x2, . . . , xn, . . . ). This is an ∞-dimensional space.

3 Finite dimensional vector space

Definition 7 A vector space is said to be finite dimensional if it contains a
basis consisting of a finite number of elements.

Theorem 8 Let (V,+,F,.) be a finite dimensional vector space. Then any
two basis for V must contain the same number of elements.

The proof will make use of following two lemmas.

Lemma 9 If a vector space V has a basis consisting of m elements, then any
collection of n>m elements is a linearly dependent set.

Lemma 10 If a vector space V has a basis consisting of n elements, then
any collection of m<n elements cannot span the space.

From these two lemmas, it follows that a basis is simultaneously:

1. a maximal linearly independent set

2. a minimal spanning set

Proof(Theorem 8): Let {α1, α2, . . . , αm} = {β
1
, β

2
, . . . , β

n
}be two basis

for the vector space V.
Since {α1, α2, . . . , αm} form a basis and the set {β

1
, β

2
, , . . . , β

n
} is a linearly

independent set, it follows that n ≤ m.
Also, since {α1, α2, . . . , αm} form a basis and the set {β

1
, β

2
, . . . , β

n
} span

the vector space V, it follows that n ≥ m.
∴ n = m if both are basis.
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3.1 Dimension

Definition 11 The dimension k of a finite dimensional vector space (V,+,F,.)
is the number of elements in any basis for the vector space.

3.2 Dimension of a Linear Code

Definition 12 The dimension of a binary linear code C of block length n is
its dimension when viewed as a subspace of (Fn

2 ,+,F,.).

4 Notation of Linear Code

A linear code is characterised by three parameters [n, k, dmin] where :

∗ n is the block length,

∗ k is the dimension,

∗ dmin is the minimum Hamming distance between any two code words.

Therefore,
Size of a linear code = 2k,

Rate of a linear code = log2
k

2

n
= k

n
.

Example 13 Single Parity Check Code, n=7

[n, k, dmin] = [7, 6, 2]

Example 14 Repetition Code, n=7

[n, k, dmin] = [7, 1, 7]

Example 15 Hamming Code, n=7

[n, k, dmin] = [7, 4, 3]
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5 Generator Matrix

Definition 16 Let C be an [n,k] binary code. Then a generator matrix G to
C is any (k × n) matrix whose rows form a basis for C.

G =


gt
1

gt
2

.

.
gt
k


where {g

1
, g

2
, . .g

k
} are a basis.

Note

1. A code can in general, have more than one generator matrix.

2. C is the rowspace of G.

Example 17 For single parity check code, generator matrix can be given by:

G =


1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1

 .

Example 18 For repetition code, generator matrix can be given by:

G =
[
1 1 1 1 1 1 1

]
.

Example 19 For Hamming code, generator matrix can be given by:

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

 .
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6 Dual Code

Definition 20 The dual C⊥ of an [n,k] binary code C is the set :

C⊥ = {y | xty = 0, all x ∈ C}

Theorem 21 If G = 
gt
1

gt
2

.

.
gt
k


is any (k×n) generator matrix for C, then the nullspace of generator matrix
is precisely the dual code,i.e, C⊥ = η(G).

Proof: Clearly, from the definition of the dual code, it follows that if y ∈ C⊥

⇒ gt
j
y = 0 , all 1 ≤ j ≤ k

∴ y ∈ η(G)

⇒ C⊥ ⊆ η(G) (1)

Next suppose y ∈ η(G)

⇒ gt
j
y = 0 , all 1 ≤ j ≤ k

If x is a codeword of C, then x =
∑k

j=1mjgj , mj ∈ F2.

⇒ (
k∑

j=1

mjg
t

j
)y = 0

⇒ xty = 0 , for all x ∈ C

⇒ y ∈ C⊥

⇒ η(G) ⊆ C⊥ (2)

Therefore from equation (1) and (2) η(G) = C⊥
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7 Parity Check Matrix

Definition 22 A parity check matrix for an [n, k] linear code C is any gen-
erator matrix for C⊥

Theorem 23 Let H be a parity check matrix for C, then C = η(H).

Proof:
Let H = 

ht1
ht2
.
.

htn−k


Let y∈ C, then clearly from the definition of parity check matrix

⇒ htjy = 0

∴ y ∈ η(H)

⇒ C ⊆ η(H)

Also
dim(C) = k

dim(η(H)) = n− (n− k) = k

∴ C = η(H)

Aside: Let A be any matrix, U is the row reduced echelon form of A. For
example,

U =


1 0 2 1 3
0 0 6 1 7
0 0 0 0 5
0 0 0 0 0

 .
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It follows that dimension of row space of A is equal to the dimension of
column space of A which is further equal to the number of pivots in the row
reduced echelon form U of A.

dim(Row Space of A)=dim(Column Space of A)=Number of pivots in U
The common dimension is called the rank of A.

Theorem 24 Fundamental Theorem of Linear Algebra If A is an
(m× n) matrix, then
rank(A) + dim(nullspace(A)) = n , where n is the number of columns of A.

Corollary 25 The dual of the dual is the code itself,i.e, (C⊥)⊥ = C.

1. (Repetition code)⊥ = (Single Parity Check Code)

2. (Single Parity Check Code)⊥ = (Repetition code)

Theorem 26 Let H be a (n− k × n) matrix such that

1. rank(H) = n-k,

2. η(H) = C,

then H is a parity check matrix for C.

Proof: Consider the equation
ht1
ht2
.
.

htn−k

 [x] = 0

We know that

htjx = 0⇒ yt
j
x = 0 , all x ∈ C , y ∈ RowSpace(H)

Clearly by the definition of the dual code

⇒ RowSpace(H) ⊆ C⊥
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But on the other hand, since the matrix H has rank = n-k, it follows that
these vectors actually span the dual code and therefore the row space of H
matrix is dual code.

dim(RowSpace(H)) = n− k

dim(C⊥) = dim(η(G)) = n− k

∴ RowSpace(H) = C⊥

So, it follows that H is a generator matrix for C⊥ ∴ H is a parity check matrix
for C.
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