E2 205 Error-Control Coding Lecture 6

Sanjhi Gupta

August 28, 2019

1 Linear Independence

Let $(\mathrm{V},+, \mathbb{F},$.$) be a vector space. Let \mathrm{A}=\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \ldots \ldots\right\}$ be a (possibly infinite) set of vectors drawn from V .
By "a Linear Combination of Vectors from A" we mean terms of the form:

$$
\sum_{j=0}^{n} c_{i_{j}} \underline{\alpha}_{i_{j}}, \quad c_{i_{j}} \in \mathbb{F}, \quad j=1,2, \ldots, n, \quad n \geq 1 \text { is an integer. }
$$

We say that A is a linearly independent set if for any finite collection

$$
\left\{\underline{\alpha}_{i_{j}} \in A \mid j=1,2, \ldots, n\right\}
$$

we have that

$$
\sum_{i=0}^{n} c_{i_{j}} \underline{\alpha}_{i_{j}}=0 \text { iff } c_{i_{j}}=0 \text { for all } j=1,2, \ldots, n
$$

We say that A spans V , if given a vector $\underline{v} \in V$, there exist $\left\{\underline{\alpha}_{i_{j}} \in A \mid j=\right.$ $1,2 \ldots n\}$ for some integer $n \geq 1$ such that

$$
\underline{v}=\sum_{j=1}^{n} c_{i_{j}} \underline{\alpha}_{i_{j}} .
$$

The space spanned by A is the set

$$
\left\{\sum_{j=0}^{n} c_{i_{j}} \underline{\alpha}_{i_{j}} \mid c_{i_{j}} \in \mathbb{F}, j=1,2, \ldots, n, \underline{\alpha}_{i j} \in A\right\}
$$

Example 1 Consider the vector space $(\mathbb{F}[X],+, \mathbb{F},$.$) and set A=\left\{1, x, x^{2} \ldots ..\right\}$ then

- the elements of set A are linearly independent,
- the elements of set A span $\mathbb{F}[X]$.

2 Basis

Definition $2 A$ basis B for a vector space ($V,+, \mathbb{F},$.$) is a collection of vectors$ $\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \ldots\right\}$ such that:

1. the set is a linearly independent set,
2. the set spans the vector space V.

2.1 Does every vector space have a basis?

1. If V is finitely generated, i.e, V is of the form

$$
V=<\underline{r}_{1}, \underline{r}_{2} \ldots \ldots \underline{r}_{m}>
$$

then this is clearly a yes.
2. In the general case, the answer is still yes but the proof relies upon Zorn's Lemma which is equivalent to the Axiom of Choice.

Lemma 3 In our setting, Zorn's Lemma tells us that if T is a set, \mathcal{A} is a collection of subsets of T and if for every chain of subset

$$
S_{1} \subseteq S_{2} \subseteq S_{3} \ldots \ldots \subseteq S_{m} \ldots
$$

the union $\cup_{j=1}^{\infty} S_{j} \in \mathcal{A}$, then T contains a maximal subset that is not contained in any other subset.

Claim 4 Every vector space has a basis.
Proof: Let T be the vector space V, \mathcal{A} be the collection of all linearly independent subsets S_{j} of V. Then for every chain

$$
S_{1} \subseteq S_{2} \subseteq S_{3} \ldots \ldots \subseteq S_{m} \ldots
$$

the union $\cup_{j=1}^{\infty} S_{j} \in \mathcal{A}$. Thus T has a maximal linearly independent subset B.

Claim $5 B$ is a basis of V.
Proof: Clearly B is a linearly independent set. Now it remains to show that B spans V. Suppose it does not span V.
Let $\underline{x} \in V$ and $\underline{x} \notin$.
This implies that $B \cup\{\underline{x}\}$ set contradicts that B is the maximal linearly independent subset. Hence B is the basis for V.

However, it is hard to construct a basis in general.
Example 6 Vector space ($\left.\mathbb{R}^{\infty},+, \mathbb{R},.\right)$. $\underline{x} \in \mathbb{R}^{\infty} \Rightarrow \underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$. This is an ∞-dimensional space.

3 Finite dimensional vector space

Definition 7 A vector space is said to be finite dimensional if it contains a basis consisting of a finite number of elements.

Theorem 8 Let ($V,+, \mathbb{F},$.) be a finite dimensional vector space. Then any two basis for V must contain the same number of elements.
The proof will make use of following two lemmas.
Lemma 9 If a vector space V has a basis consisting of m elements, then any collection of $n>m$ elements is a linearly dependent set.

Lemma 10 If a vector space V has a basis consisting of n elements, then any collection of $m<n$ elements cannot span the space.

From these two lemmas, it follows that a basis is simultaneously:

1. a maximal linearly independent set
2. a minimal spanning set
$\operatorname{Proof}\left(\right.$ Theorem 8): Let $\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \ldots, \underline{\alpha}_{m}\right\}=\left\{\underline{\beta}_{1}, \underline{\beta}_{2}, \ldots, \underline{\beta}_{n}\right\}$ be two basis for the vector space V .
Since $\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \ldots, \underline{\alpha}_{m}\right\}$ form a basis and the set $\left\{\underline{\beta}_{1}, \underline{\beta}_{2}, \ldots, \underline{\beta}_{n}\right\}$ is a linearly independent set, it follows that $n \leq m$.
Also, since $\left\{\underline{\alpha}_{1}, \underline{\alpha}_{2}, \ldots, \underline{\alpha}_{m}\right\}$ form a basis and the set $\left\{\underline{\beta}_{1}, \underline{\beta}_{2}, \ldots, \underline{\beta}_{n}\right\}$ span the vector space V , it follows that $n \geq m$.
$\therefore n=m$ if both are basis.

3.1 Dimension

Definition 11 The dimension k of a finite dimensional vector space ($V,+, \mathbb{F},$.) is the number of elements in any basis for the vector space.

3.2 Dimension of a Linear Code

Definition 12 The dimension of a binary linear code \mathcal{C} of block length n is its dimension when viewed as a subspace of $\left(\mathbb{F}_{2}^{n},+, \mathbb{F},.\right)$.

4 Notation of Linear Code

A linear code is characterised by three parameters $\left[n, k, d_{\text {min }}\right]$ where :

* n is the block length,
* k is the dimension,
* $d_{\text {min }}$ is the minimum Hamming distance between any two code words.

Therefore,
Size of a linear code $=2^{k}$,
Rate of a linear code $=\frac{\log _{2} 2^{k}}{n}=\frac{k}{n}$.

Example 13 Single Parity Check Code, $n=7$

$$
\left[n, k, d_{\text {min }}\right]=[7,6,2]
$$

Example 14 Repetition Code, $n=7$

$$
\left[n, k, d_{\text {min }}\right]=[7,1,7]
$$

Example 15 Hamming Code, $n=7$

$$
\left[n, k, d_{\min }\right]=[7,4,3]
$$

5 Generator Matrix

Definition 16 Let \mathcal{C} be an $[n, k]$ binary code. Then a generator matrix G to \mathcal{C} is any $(k \times n)$ matrix whose rows form a basis for \mathcal{C}.

$$
G=\left[\begin{array}{c}
\underline{g}_{1}^{t} \\
\underline{g}_{2}^{t} \\
\cdot \\
\cdot \\
\underline{g}_{k}^{t}
\end{array}\right]
$$

where $\left\{\underline{g}_{1}, \underline{g}_{2}, . \underline{g}_{k}\right\}$ are a basis.

Note

1. A code can in general, have more than one generator matrix.
2. \mathcal{C} is the rowspace of G .

Example 17 For single parity check code, generator matrix can be given by:

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Example 18 For repetition code, generator matrix can be given by:

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

Example 19 For Hamming code, generator matrix can be given by:

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

6 Dual Code

Definition 20 The dual \mathcal{C}^{\perp} of an $[n, k]$ binary code \mathcal{C} is the set:

$$
\mathcal{C}^{\perp}=\left\{\underline{y} \mid \underline{x}^{t} \underline{y}=0, \quad \text { all } \underline{x} \in \mathcal{C}\right\}
$$

Theorem 21 If $G=$

$$
\left[\begin{array}{c}
g_{1}^{t} \\
\underline{g}_{2}^{t} \\
\cdot \\
\cdot \\
\underline{g}_{k}^{t}
\end{array}\right]
$$

is any $(k \times n)$ generator matrix for \mathcal{C}, then the nullspace of generator matrix is precisely the dual code,i.e, $\mathcal{C}^{\perp}=\eta(G)$.

Proof: Clearly, from the definition of the dual code, it follows that if $\mathrm{y} \in \mathcal{C}^{\perp}$

$$
\begin{align*}
\Rightarrow \underline{g}_{j}^{t} \underline{y}= & \underline{0} \quad, \text { all } 1 \leq j \leq k \\
& \therefore \underline{y} \in \eta(G) \\
& \Rightarrow \mathcal{C}^{\perp} \subseteq \eta(G) \tag{1}
\end{align*}
$$

Next suppose $\underline{y} \in \eta(G)$

$$
\Rightarrow \underline{g}_{j}^{t} \underline{y}=\underline{0} \quad, \text { all } 1 \leq j \leq k
$$

If \underline{x} is a codeword of \mathcal{C}, then $\underline{x}=\sum_{j=1}^{k} m_{j} \underline{g}_{j}, m_{j} \in \mathbb{F}_{2}$.

$$
\begin{align*}
\Rightarrow & \left(\sum_{j=1}^{k} m_{j} \underline{g}_{j}^{t}\right) \underline{y}=\underline{0} \\
\Rightarrow \underline{x}^{t} \underline{y}= & \underline{0} \quad, \text { for all } \underline{x} \in \mathcal{C} \\
& \Rightarrow \underline{y} \in \mathcal{C}^{\perp} \\
& \Rightarrow \eta(G) \subseteq \mathcal{C}^{\perp} \tag{2}
\end{align*}
$$

Therefore from equation (1) and (2) $\eta(G)=\mathcal{C}^{\perp}$

7 Parity Check Matrix

Definition 22 A parity check matrix for an $[n, k]$ linear code \mathcal{C} is any generator matrix for \mathcal{C}^{\perp}

Theorem 23 Let H be a parity check matrix for \mathcal{C}, then $\mathcal{C}=\eta(H)$.
Proof:
Let $\mathrm{H}=$

$$
\left[\begin{array}{c}
\underline{h}_{1}^{t} \\
\underline{h}_{2}^{t} \\
\cdot \\
\cdot \\
\underline{h}_{n-k}^{t}
\end{array}\right]
$$

Let $\underline{y} \in \mathcal{C}$, then clearly from the definition of parity check matrix

$$
\begin{aligned}
& \Rightarrow \underline{h}_{j}^{t} \underline{y}=\underline{0} \\
& \therefore \underline{y} \in \eta(H) \\
& \Rightarrow \mathcal{C} \subseteq \eta(H)
\end{aligned}
$$

Also

$$
\begin{gathered}
\operatorname{dim}(\mathcal{C})=k \\
\operatorname{dim}(\eta(H))=n-(n-k)=k \\
\therefore \mathcal{C}=\eta(H)
\end{gathered}
$$

Aside: Let A be any matrix, U is the row reduced echelon form of A . For example,

$$
U=\left[\begin{array}{lllll}
1 & 0 & 2 & 1 & 3 \\
0 & 0 & 6 & 1 & 7 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

It follows that dimension of row space of A is equal to the dimension of column space of A which is further equal to the number of pivots in the row reduced echelon form U of A .
$\operatorname{dim}($ Row Space of $A)=\operatorname{dim}($ Column Space of $A)=$ Number of pivots in U The common dimension is called the rank of A .

Theorem 24 Fundamental Theorem of Linear Algebra If A is an ($m \times n$) matrix, then
$\operatorname{rank}(A)+\operatorname{dim}($ nullspace $(A))=n$, where n is the number of columns of A.
Corollary 25 The dual of the dual is the code itself,i.e, $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$.

1. $(\text { Repetition code })^{\perp}=($ Single Parity Check Code $)$
2. $(\text { Single Parity Check Code })^{\perp}=($ Repetition code $)$

Theorem 26 Let H be a $(n-k \times n)$ matrix such that

1. $\operatorname{rank}(H)=n-k$,
2. $\eta(H)=\mathcal{C}$,
then H is a parity check matrix for \mathcal{C}.
Proof: Consider the equation

$$
\left[\begin{array}{c}
\underline{h}_{1}^{t} \\
\underline{h}_{2}^{t} \\
\cdot \\
\cdot \\
\underline{h}_{n-k}^{t}
\end{array}\right][\underline{x}]=\underline{0}
$$

We know that

$$
\underline{h}_{j}^{t} \underline{x}=\underline{0} \Rightarrow \underline{y}_{j}^{t} \underline{x}=\underline{0} \quad, \quad \text { all } x \in \mathcal{C}, \quad \underline{y} \in \operatorname{RowSpace}(H)
$$

Clearly by the definition of the dual code

$$
\Rightarrow \operatorname{RowSpace}(H) \subseteq \mathcal{C}^{\perp}
$$

But on the other hand, since the matrix H has rank $=\mathrm{n}-\mathrm{k}$, it follows that these vectors actually span the dual code and therefore the row space of H matrix is dual code.

$$
\begin{gathered}
\operatorname{dim}(\operatorname{RowSpace}(H))=n-k \\
\operatorname{dim}\left(\mathcal{C}^{\perp}\right)=\operatorname{dim}(\eta(G))=n-k \\
\therefore \operatorname{RowSpace}(H)=\mathcal{C}^{\perp}
\end{gathered}
$$

So, it follows that H is a generator matrix for $\mathcal{C}^{\perp} \therefore \mathrm{H}$ is a parity check matrix for \mathcal{C}.

