E2 205 Error-Control Coding Lecture 7

Naveenkumar M

September 4, 2019

1 More on Linear Codes

$-\mathbb{C}^{\perp}=\left\{\underline{\mathrm{y}} \mid \underline{\mathrm{x}}^{t} \underline{\mathrm{y}}=0\right.$, all $\left.\underline{\mathrm{x}} \in \mathbb{C}\right\}$

- $\mathbb{C}^{\perp}=\eta(G)_{(k \times n)}$
- Define $\mathrm{H}=$ generator matrix of \mathbb{C}^{\perp} and a parity check matrix for \mathbb{C}
$-\mathbb{C}=\eta(H) \quad \therefore \mathbb{C}=\left(\mathbb{C}^{\perp}\right)^{\perp}$
- If H is of size $(n-k \times n)$ and $\eta(H)=\mathbb{C}$, then H is a parity check matrix for \mathbb{C}.
- If H has a rank $(n-k)$ and $G H^{\top}=[0]$, then H is a parity check matrix for \mathbb{C}.

1.1 Theorem 1

Let H be of size $(n-k \times n)$ and $\eta(H)=\mathbb{C}$, then H is a parity check matrix for \mathbb{C}.

Proof: We need to show that $\operatorname{Row}(H)=\mathbb{C}^{\perp}$

$$
\left[\begin{array}{c}
\underline{h}_{1}^{t} \tag{1}\\
\underline{h}_{2}^{t} \\
\cdot \\
\cdot \\
\cdot \\
\underline{h}_{(n-k)}^{t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=[0], \text { all } \underline{c} \in \mathbb{C} .
$$

$\therefore \underline{h}_{i} \in \mathbb{C}^{\perp}$, all i
$\therefore \quad \operatorname{Row}(H) \subseteq R^{\perp}$
$\therefore \quad \operatorname{Row}(H)=R^{\perp}$, since both have dimension $=(n-k)$.
(Since $\mathbb{C}^{\perp}=\eta(G)$, it follows that if \mathbb{C} is an $[n, k]$ code, \mathbb{C}^{\perp} is an $[n, n-k]$ code.)

Note: $\operatorname{Rank}(H)=n-k$.

1.2 Theorem 2

Suppose G is the generator matrix of an $[n, k]$ code and H is an $(n-k \times n)$ matrix of rank $(n-k)$, such that

$$
\begin{gathered}
G H^{\top}=[0] \\
(k \times n)(n \times n-k)=(k \times n-k)
\end{gathered}
$$

Then H is a parity check matrix for \mathbb{C}.

Proof:

$$
\left[\begin{array}{c}
\underline{g}_{1}^{t} \tag{2}\\
\underline{g}_{2}^{t} \\
\cdot \\
\cdot \\
\cdot \\
\underline{g}_{k}^{t}
\end{array}\right]_{k \times n}
$$

$$
\begin{aligned}
& G \\
& \therefore \underline{g}_{i}^{t} \cdot \underline{h}_{j}=0, \text { all } i, j \\
& \therefore \underline{c}^{\top} \cdot h_{j}=0, \text { all } \underline{c} \in \mathbb{C} \\
\therefore & \underline{h}_{j} \in \mathbb{C}^{\perp} \\
\therefore \quad & \operatorname{Rowspace}(H) \subseteq \mathbb{C}^{\perp} \\
\therefore & \operatorname{Rowspace}(H)=\mathbb{C}^{\perp}(\text { By comparing dimensions })
\end{aligned}
$$

1.2.1 Example-1

\mathbb{C} is the $[7,6]$ single parity check code, then

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]_{1 \times 7}
$$

1.2.2 Example-2

\mathbb{C} is the repetition code, then

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]_{6 \times 7}=\left[I_{6} \mid \underline{1}\right]
$$

H is not unique.
Definition $1 A(k \times n)$ matrix G is said to be a systematic generator matrix for the $[n, k]$ code \mathbb{C}, if G is of the form:

$$
G=\left[I_{k} \mid P\right]_{k \times n},
$$

where $P_{k \times n-k}$ is the parity matrix.

2 Encoding in a Linear Code

$$
\underset{\underset{\mathbb{F}_{2}^{k}}{\underline{u}} \longrightarrow \underline{c} \mathbb{F}_{2}^{n}}{ }
$$

Message Vector Code word

$$
\underline{c}^{t}=\underline{u}^{t} G
$$

If G is systematic, then

$$
\underline{c}^{t}=\underline{u}^{t} \cdot\left[I_{k} \mid P\right]=\left[\underline{u}^{t} \mid \underline{u}^{t} \cdot P\right]
$$

Thus the $1^{\text {st }} \mathrm{k}$ code symbols are precisely the message symbols.
Note : Let G be a systematic generator matrix.

$$
G=\left[I_{k} \mid P\right]_{k \times n}
$$

for a linear code \mathbb{C}, Then

$$
H=\left[P^{\top} \mid I_{n-k}\right]_{n-k \times n}
$$

is a valid parity check matrix for the code \mathbb{C}.
Proof: $\quad \mathrm{H}$ is of size $(n-k \times n), \operatorname{Rank}(H)=n-k$.

$$
\begin{aligned}
& G H^{\top}=\left[\begin{array}{ll}
I_{k} \mid & P
\end{array}\right]_{k \times n}\left[\begin{array}{c}
P \\
-- \\
I_{n-k}
\end{array}\right]_{n \times n-k} \\
& \quad=I_{k} P+P I_{n-k}=P+P=[0] .
\end{aligned}
$$

2.0.1 Example

Let

$$
G=\left[\begin{array}{l|l}
I_{6} & P
\end{array}\right]
$$

be the generator matrix for Single Parity check code, Then

$$
H=\left[P^{\top} \mid I_{1}\right]=\left[\begin{array}{llllll|l}
1 & 1 & 1 & 1 & 1 & 1 & \mid
\end{array}\right]
$$

is a valid parity check matrix for the single parity check code.

2.0.2 Question

Does every $[n, k]$ linear code have a systematic generator matrix?

$$
G=\left[\begin{array}{llllllll}
\underline{g}_{1} & \underline{g}_{2} & \underline{g}_{1} & \cdot & \cdot & \underline{g}_{k} & \cdot & \underline{\mathrm{~g}}_{n}
\end{array}\right]
$$

Ans:Not necessarily as this depends upon the rank of the sub-matrix associated to the $1^{\text {st }} \mathrm{k}$ columns of G .

Definition 2 Two codes $\mathbb{C}_{1}, \mathbb{C}_{2}$ are said to be equivalent if one can be obtained from the other by permuting code symbols.

Example:
$\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right) \in \mathbb{C}_{1}$
$\left(c_{1}, c_{3}, c_{5}, c_{7}, c_{2}, c_{4}, c_{6}\right) \in \mathbb{C}_{2}$
$\Longrightarrow \mathbb{C}_{1}$ and \mathbb{C}_{2} are equivalent
It follows that every code \mathbb{C} is equivalent to a second code $\mathbb{C}^{‘}$ that has a systematic generator matrix.

3 Minimum Distance of a Linear Block Code

3.1 Theorem

The minimum distance $d_{\text {min }}$ of a linear block code \mathbb{C} is the minimum Hamming weight $W_{\text {min }}$ of a non zero codeword.

Proof: Let $\underline{\mathrm{c}}_{1}, \underline{\mathrm{c}}_{2} \in \mathbb{C}$ such that $d_{H}\left(\underline{\mathrm{c}}_{1}, \underline{\mathrm{c}}_{2}\right)=d_{\text {min }}$.
Then $W_{H}\left(\underline{\mathrm{c}}_{1}+\underline{\mathrm{c}}_{2}\right)=d_{\text {min }}$
$\therefore W_{\min } \leq d_{\min }\left(\right.$ Since $\left.\underline{\mathrm{c}}_{1}+\underline{\mathrm{c}}_{2} \in \mathbb{C}\right)$
Next, let $W_{H}(\underline{\mathrm{c}})=W_{\text {min }}, \quad \underline{\mathrm{c}} \neq 0$
Then $W_{H}(\underline{0}, \underline{\mathrm{c}})=W_{\text {min }} \Longrightarrow d_{H}(\underline{0}, \underline{\mathrm{c}})=W_{\text {min }} \Longrightarrow d_{\text {min }} \leq W_{\text {min }}$

$$
\therefore \quad d_{\min }=W_{\min }
$$

Example-1 \mathbb{C} is the Single Parity check code, then $d_{\text {min }}=2$.

Example-2 \mathbb{C} is the repetition code with $n=7$, then $d_{\text {min }}=7$.
Definition 3 Given a linear code \mathbb{C}, let s be the largest integer, such that any s columns of parity check matrix H are linearly independent.

Theorem: $\quad d_{\min }(\mathbb{C})=s+1$

Proof: Let

$$
H=\left[\begin{array}{llllll}
\underline{\mathrm{h}}_{1} & \underline{\mathrm{~h}}_{2} & \underline{\mathrm{~h}}_{3} & \cdot & \cdot & \underline{\mathrm{~h}}_{n}
\end{array}\right] .
$$

Note that $\underline{h}_{1}+\underline{\mathrm{h}}_{2}+\underline{\mathrm{h}}_{3}=\underline{0}$ iff $\left[\begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 0 & \cdots & 0\end{array}\right]^{\top} \in \mathbb{C}$.
Thus the presence of a non zero code word of Hamming weight W in \mathbb{C} implies that the parity check matrix H of \mathbb{C} contains a set of W dependent columns.
It follows that,

$$
\begin{gathered}
s=W_{\min }-1 \\
\therefore \quad W_{\text {min }}=d_{\text {min }}=s+1
\end{gathered}
$$

Example Hamming code: [7,4,3]

Figure 1: Hamming Code [7, 4, 3]

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
m_{0} \\
m_{1} \\
m_{2} \\
m_{3} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{s}=2 \\
& \therefore \quad d_{\min }=3
\end{aligned}
$$

3.2 Parameters of a Hamming code

Definition 4 Let $r \geq 2$ be an integer and set $n=2^{r}-1$. Then the Hamming code of length n is any code that has an $\left(r \times 2^{r}-1\right)$ parity check matrix whose $2^{r}-1$ columns are precisely the set of all non-zero r-tuples.

$$
\begin{array}{ccc}
{\left[n=2^{r}-1,\right.} & \left.2^{r}-1-r, 3\right] \\
n & k & d_{\min }
\end{array}
$$

4 Singleton Bound

4.1 Theorem

Let \mathbb{C} be an $[\mathrm{n}, \mathrm{k}]$ linear code, Then $d_{\min } \leq(n-k+1)$

Proof:

$$
\begin{aligned}
& & \leq n-k \\
\therefore \quad & d_{\min } & \leq(n-k+1)
\end{aligned}
$$

Example: For $[n, n-1,2]$ single parity check code, $d_{\min }=n-k+1=2$.
Definition 5 Codes that achieve the Singleton bound with equality are called Maximum Distance Separable (MDS) codes.

Example: For [$n, 1, n$] repetition code

$$
d_{\min }=n
$$

$\therefore \quad$ The code is Maximum Distance Separable.

Exercise: Show that these are the only possible MDS binary codes.

5 Bounds on code size (Hamming Bound)

5.1 Theorem

Let \mathbb{C} be an $\left(n, M, d_{\text {min }}\right)$ code, then

$$
M \leq \frac{2^{n}}{\sum_{i=0}^{t}\binom{n}{i}}
$$

where $t=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$.

Proof:

Figure 2: Hamming Bound
Note that in $\mathbb{C}, B\left(\underline{c}_{1}, t\right) \cap B\left(\underline{c}_{2}, t\right)=\phi$
$\therefore \quad M|B(\underline{c}, t)| \leq 2^{n}$
$\therefore \quad M \leq \frac{2^{n}}{|B(\underline{\mathrm{C}}, t)|}=\frac{2^{n}}{\sum_{i=0}^{t}\binom{n}{i}}$
Example: $\left[2^{r}-1,2^{r}-1-r, 3\right]$ Hamming Code , $t=1$

$$
M \leq \frac{2^{n}}{1+n} \leq \frac{2^{2^{r}-1}}{2^{r}}=2^{2^{r}-1-r}
$$

Codes achieving the Hamming bound with equality are called perfect codes.
Thus Hamming codes are perfect.

