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1 More on Linear Codes

– C⊥ = { y
¯
| x

¯
t y

¯
= 0, all x

¯
∈ C }

– C⊥ = η(G) (k×n)

– Define H = generator matrix of C⊥ and a parity check matrix for C

– C = η(H) ∴ C = (C⊥) ⊥

– If H is of size (n − k × n) and η(H) = C, then H is a parity check
matrix for C.

– If H has a rank (n − k) and GH> = [ 0] , then H is a parity check
matrix for C.

1.1 Theorem 1

Let H be of size (n−k×n) and η(H) = C, then H is a parity check matrix
for C.
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Proof: We need to show that Row(H) = C⊥

ht1
ht2

·
·
·

ht(n−k)





c1
c2

·
·
·
cn


=
[
0
]
, all c ∈ C. (1)

∴ hi ∈ C⊥, all i

∴ Row(H) ⊆ R⊥

∴ Row(H) = R⊥, since both have dimension = (n− k).

( Since C⊥ = η(G) , it follows that if C is an [n, k] code, C⊥ is an [n, n−k]
code.)

Note: Rank(H) = n− k.

1.2 Theorem 2

Suppose G is the generator matrix of an [n, k] code and H is an (n− k×n)
matrix of rank (n− k) , such that

GH> = [ 0]
( k × n) (n× n− k) = ( k × n− k)

Then H is a parity check matrix for C.

Proof: 

gt
1

gt
2

·
·
·
gt
k


k×n

[
h1 h2 · · · h(n−k)

]
n×n−k =

[
0
]
k×n−k (2)
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G H>

∴ gt
i
· hj = 0, all i, j

∴ ct · hj = 0, all c ∈ C

∴ hj ∈ C⊥

∴ Rowspace(H) ⊆ C⊥

∴ Rowspace(H) = C⊥ (By comparing dimensions)

1.2.1 Example-1

C is the [ 7, 6] single parity check code, then

H =
[
1 1 1 1 1 1 1

]
1×7

1.2.2 Example-2

C is the repetition code, then

H =


1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1


6×7

=
[
I6 | 1

]

H is not unique.

Definition 1 A (k×n) matrix G is said to be a systematic generator matrix
for the [n, k] code C, if G is of the form:

G =
[
Ik | P

]
k×n ,

where Pk×n−k is the parity matrix.
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2 Encoding in a Linear Code

u −→ c
∈ Fk

2 ∈ Fn
2

Message Vector Code word

ct = utG

If G is systematic, then

ct = ut ·
[
Ik | P

]
=
[
ut | ut · P

]
Thus the 1st k code symbols are precisely the message symbols.

Note : Let G be a systematic generator matrix.

G =
[
Ik | P

]
k×n

for a linear code C, Then

H =
[
P> | In−k

]
n−k×n

is a valid parity check matrix for the code C.

Proof: H is of size (n− k × n), Rank(H) = n− k.

GH> =
[
Ik | P

]
k×n

 P
−−
In−k


n×n−k

= Ik P + P In−k = P + P =
[
0
]
.

2.0.1 Example

Let
G =

[
I6 | P

]
be the generator matrix for Single Parity check code, Then

H =
[
P> | I1

]
=
[
1 1 1 1 1 1 | 1

]
is a valid parity check matrix for the single parity check code.
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2.0.2 Question

Does every [n, k] linear code have a systematic generator matrix?

G =
[
g
1
g
2
g
1
· · g

k
· · g

¯n

]
Ans:Not necessarily as this depends upon the rank of the sub-matrix associ-
ated to the 1st k columns of G.

Definition 2 Two codes C1, C2 are said to be equivalent if one can be ob-
tained from the other by permuting code symbols.

Example:
( c1, c2, c3, c4, c5, c6, c7) ∈ C1

( c1, c3, c5, c7, c2, c4, c6) ∈ C2

=⇒ C1 and C2 are equivalent

It follows that every code C is equivalent to a second code C‘ that has a
systematic generator matrix.

3 Minimum Distance of a Linear Block Code

3.1 Theorem

The minimum distance dmin of a linear block code C is the minimum Ham-
ming weight Wmin of a non zero codeword.

Proof: Let c
¯1
, c

¯2
∈ C such that dH( c

¯1
, c
¯2

) = dmin.

Then WH( c
¯1

+ c
¯2

) = dmin

∴ Wmin ≤ dmin (Since c
¯1

+ c
¯2
∈ C)

Next , let WH( c
¯
) = Wmin, c

¯
6= 0

Then WH( 0
¯
, c
¯
) = Wmin =⇒ dH( 0

¯
, c
¯
) = Wmin =⇒ dmin ≤ Wmin
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∴ dmin = Wmin

Example-1 C is the Single Parity check code, then dmin = 2.

Example-2 C is the repetition code with n = 7, then dmin = 7.

Definition 3 Given a linear code C, let s be the largest integer, such that
any s columns of parity check matrix H are linearly independent.

Theorem: dmin(C) = s+ 1

Proof: Let
H =

[
h
¯1 h

¯2 h
¯3 · · h

¯n

]
.

Note that h
¯1 + h

¯2 + h
¯3 = 0 iff

[
1 1 1 0 0 0 · · · 0

]> ∈ C.
Thus the presence of a non zero code word of Hamming weight W in C
implies that the parity check matrix H of C contains a set of W dependent
columns.
It follows that,

s = Wmin − 1

∴ Wmin = dmin = s+ 1

Example Hamming code: [ 7, 4, 3]
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Figure 1: Hamming Code [ 7, 4, 3]

H =

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1




m0

m1

m2

m3

p1
p2
p3


=

0
0
0



s=2

∴ dmin = 3

3.2 Parameters of a Hamming code

Definition 4 Let r ≥ 2 be an integer and set n = 2r−1. Then the Hamming
code of length n is any code that has an ( r×2r−1) parity check matrix whose
2r − 1 columns are precisely the set of all non-zero r-tuples.

[n = 2r − 1, 2r − 1− r, 3]

n k dmin
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4 Singleton Bound

4.1 Theorem

Let C be an [ n, k ] linear code, Then dmin ≤ (n− k + 1)

Proof:
s ≤ n− k

∴ dmin ≤ (n− k + 1)

Example: For [n, n− 1, 2] single parity check code, dmin = n− k+ 1 = 2.

Definition 5 Codes that achieve the Singleton bound with equality are called
Maximum Distance Separable (MDS) codes.

Example: For [n, 1, n] repetition code

dmin = n

∴ The code is Maximum Distance Separable.

Exercise: Show that these are the only possible MDS binary codes.

5 Bounds on code size (Hamming Bound)

5.1 Theorem

Let C be an (n,M, dmin) code, then

M ≤ 2n∑t
i=0

(
n
i

) ,
where t = bdmin−1

2
c.
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Proof:

Figure 2: Hamming Bound

Note that in C, B( c
¯1
, t) ∩B( c

¯2
, t) = φ

∴ M | B( c
¯
, t) | ≤ 2n

∴ M ≤ 2n

|B(c
¯
,t) | = 2n∑t

i=0 (n
i)

Example: [ 2r − 1, 2r − 1− r, 3] Hamming Code , t = 1

M ≤ 2n

1+n
≤ 22

r−1

2r
= 22r−1−r

Codes achieving the Hamming bound with equality are called perfect codes.

Thus Hamming codes are perfect.
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