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1 Bounds on code size

Suppose C is an [n, k] linear perfect code, then we must have

2k =
2n∑t
i=0

(
n
i

)
where t = bd−1

2
c and d = minimum distance between any two codewords.

=⇒
t∑
i=0

(
n

i

)
= 2n−k

• Suppose a case where n = 23 and k = 12.

211 =

(
23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 2048

then it suggests that it is a [23,12,7] Golay code.

• Only known perfect codes are as follows:
i. The binary Hamming codes
ii. The [23,12,7] Golay code
iii. Non-binary Hamming codes[qm − 1

q − 1
, k = n−m, d = 3

]
q

iv. The [11, 6, 5]3 Ternary code

1.1 The Gilbert-Varshamov lower bound

Theorem. Let M be the largest size of a binary code of block length n and minimum
distance dmin = d, then

M ≥ 2n∑d−1
i=0

(
n
i

) .
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Figure 1: GV Bound

Proof. We follow an iterative procedure from Fn2 . We pick a codeword ci on the ith

attempt and throw away all vectors in the ball B(ci, d − 1) and so on. Clearly we will
reach a point when there are no more vectors left to pick. Let M be the number of
codewords picked up to this point. Then we must have:

M |B(0, d− 1)| ≥ 2n

(else we could pick up one more codeword)

∴ M ≥ 2n∑d−1
i=0

(
n
i

)

1.2 Asymptotic (n→∞) bounds

Long codes make the channel more predictable and hence causing errors introduced by
the channel to be more correctable.

Eg:- Consider the binary symmetric channel. Let the code C have long blocklength n.

Q: How many errors has the channels introduced?

Set Xi = 1, if the ith code symbol is in error
= 0, else.

Let,

Yn =

∑n
i=1Xi

n
, E[Yn] = µ.

Then,

P (|Yn − µ| ≥ δ) ≤ E[(Yn − µ)2]

δ2
.

Now,

E[(Yn − µ)2] = E
[(∑n

i=1(Xi − µ)

n

)2]
=
nσ2

n2
=
σ2

n
, σ2 = ε(1− ε).
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Figure 2: Binary symmetric channel(BSC)

∴ P (|Yn − µ| ≥ δ) ≤ σ2

nδ2
→ 0.

Set Zn =
∑n

i=1Xi, then Pr(zn = k) =
(
n
k

)
εk(1−ε)n−k tends to a Gaussian distribution

by the central limit theorem(CLT).

Mean : E[Zn] = nε
Standard Deviation : σ =

√
nε(1− ε)

Figure 3: Gaussian distribution with mean and variance as above
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Thus with high probability the number of errors is in a narrow band surrounding the
mean nε. Thus it suffices to use an error-correcting code with dmin > 2nε.
set δ = limn→∞( d

n
) (Fractional minimum distance)

=⇒ δ > 2ε.

Definition. Give fractional minimum distance 0 < δ < 1, let dn = dnδe and let M(n, δ)
be the largest size of a block code of block length n and dmin = dn = dnδe.

Set rate of the code = R(δ) = lim supn→∞
log2(M(n,δ))

n
.

Q : How does R(δ) vary with δ?

Ans: It can be shown that the Hamming and Gilbert-Varshamov bounds imply that

1−H2(δ) ≤ R(δ) ≤ 1−H2

(δ
2

)
where for 0 < θ < 1,

H2(θ) = θ log2

(1

θ

)
+ (1− θ) log2

( 1

1− θ

)
(The binary entropy function).

Recall,
2n∑dn−1

i=0

(
n
i

) ≤M ≤ 2n∑t
i=0

(
n
i

)
For 0 < µ <

1

2
,

2nH2(µ)√
8nµ(1− µ)

≤
µn∑
l=0

(
n

l

)
≤ 2nH2(µ)

In our application, nµ = dn − 1 or nµ = t = bdn−1
2
c.

Figure 4: Bounds & relation between rate of the code and fractional minimum dis-
tance.(shaded part denotes the region where best code lies)

4



1.3 The Elias bound

Let C be a binary code of block length n and minimum distance d.

Let t ≤ n
2

be an integer.

We want to count the pairs

{ (c, x) | c ∈ C, x ∈ Fn2 , dH(c, x) ≤ t }

in two different ways: ∑
x∈Fn

2

|B(x, t) ∩ C| =
∑
c∈C

|B(c, t)| = |B(0, t)||C|

∴ There must exist x ∈ Fn2 such that

|B(x, t) ∩ C| ≥ |B(0, t)||C|
2n

To be continued...

Figure 5: Bounds & relation between rate of the code and minimum fractional distance.
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