E2 205 Error-Control Coding
 Lecture 8

Samrat Kundu
September 9, 2019

1 Bounds on code size

Suppose \mathcal{C} is an $[n, k]$ linear perfect code, then we must have

$$
2^{k}=\frac{2^{n}}{\sum_{i=0}^{t}\binom{n}{i}}
$$

where $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ and $d=$ minimum distance between any two codewords.

$$
\Longrightarrow \sum_{i=0}^{t}\binom{n}{i}=2^{n-k}
$$

- Suppose a case where $n=23$ and $k=12$.

$$
2^{11}=\binom{23}{0}+\binom{23}{1}+\binom{23}{2}+\binom{23}{3}=2048
$$

then it suggests that it is a $[23,12,7]$ Golay code.

- Only known perfect codes are as follows:
i. The binary Hamming codes
ii. The $[23,12,7]$ Golay code
iii. Non-binary Hamming codes

$$
\left[\frac{q^{m}-1}{q-1}, k=n-m, d=3\right]_{q}
$$

iv. The $[11,6,5]_{3}$ Ternary code

1.1 The Gilbert-Varshamov lower bound

Theorem. Let M be the largest size of a binary code of block length n and minimum distance $d_{\text {min }}=d$, then

$$
M \geq \frac{2^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}}
$$

Figure 1: GV Bound

Proof. We follow an iterative procedure from \mathbb{F}_{2}^{n}. We pick a codeword $\underline{c_{i}}$ on the $i^{\text {th }}$ attempt and throw away all vectors in the ball $\mathcal{B}\left(\underline{c}_{i}, d-1\right)$ and so on. Clearly we will reach a point when there are no more vectors left to pick. Let M be the number of codewords picked up to this point. Then we must have:

$$
M|\mathcal{B}(\underline{0}, d-1)| \geq 2^{n}
$$

(else we could pick up one more codeword)

$$
\therefore M \geq \frac{2^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}}
$$

1.2 Asymptotic $(n \rightarrow \infty)$ bounds

Long codes make the channel more predictable and hence causing errors introduced by the channel to be more correctable.

Eg:- Consider the binary symmetric channel. Let the code \mathcal{C} have long blocklength n.
\mathcal{Q} : How many errors has the channels introduced?
Set $X_{i}=1$, if the $i^{\text {th }}$ code symbol is in error

$$
=0, \text { else }
$$

Let,

$$
Y_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}, \quad \mathbb{E}\left[Y_{n}\right]=\mu
$$

Then,

$$
P\left(\left|Y_{n}-\mu\right| \geq \delta\right) \leq \frac{\mathbb{E}\left[\left(Y_{n}-\mu\right)^{2}\right]}{\delta^{2}}
$$

Now,

$$
\mathbb{E}\left[\left(Y_{n}-\mu\right)^{2}\right]=\mathbb{E}\left[\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{n}\right)^{2}\right]=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}, \quad \sigma^{2}=\epsilon(1-\epsilon) .
$$

Figure 2: Binary symmetric channel(BSC)

$$
\therefore P\left(\left|Y_{n}-\mu\right| \geq \delta\right) \leq \frac{\sigma^{2}}{n \delta^{2}} \rightarrow 0
$$

Set $Z_{n}=\sum_{i=1}^{n} X_{i}$, then $\operatorname{Pr}\left(z_{n}=k\right)=\binom{n}{k} \epsilon^{k}(1-\epsilon)^{n-k}$ tends to a Gaussian distribution by the central limit theorem(CLT).

Mean: $\mathbb{E}\left[Z_{n}\right]=n \epsilon$
Standard Deviation : $\sigma=\sqrt{n \epsilon(1-\epsilon)}$

Figure 3: Gaussian distribution with mean and variance as above

Thus with high probability the number of errors is in a narrow band surrounding the mean $n \epsilon$. Thus it suffices to use an error-correcting code with $d_{\text {min }}>2 n \epsilon$.
set $\delta=\lim _{n \rightarrow \infty}\left(\frac{d}{n}\right) \quad$ (Fractional minimum distance)
$\Longrightarrow \delta>2 \epsilon$.
Definition. Give fractional minimum distance $0<\delta<1$, let $d_{n}=\lceil n \delta\rceil$ and let $M(n, \delta)$ be the largest size of a block code of block length n and $d_{\min }=d_{n}=\lceil n \delta\rceil$.

Set rate of the code $=R(\delta)=\lim \sup _{n \rightarrow \infty} \frac{\log _{2}(M(n, \delta))}{n}$.
\mathcal{Q} : How does $R(\delta)$ vary with δ ?
Ans: It can be shown that the Hamming and Gilbert-Varshamov bounds imply that

$$
1-H_{2}(\delta) \leq R(\delta) \leq 1-H_{2}\left(\frac{\delta}{2}\right)
$$

where for $0<\theta<1$,

$$
H_{2}(\theta)=\theta \log _{2}\left(\frac{1}{\theta}\right)+(1-\theta) \log _{2}\left(\frac{1}{1-\theta}\right) \text { (The binary entropy function). }
$$

Recall,

$$
\begin{gathered}
\frac{2^{n}}{\sum_{i=0}^{d_{n}-1}\binom{n}{i}} \leq M \leq \frac{2^{n}}{\sum_{i=0}^{t}\binom{n}{i}} \\
\text { For } 0<\mu<\frac{1}{2}, \quad \frac{2^{n H_{2}(\mu)}}{\sqrt{8 n \mu(1-\mu)}} \leq \sum_{l=0}^{\mu n}\binom{n}{l} \leq 2^{n H_{2}(\mu)}
\end{gathered}
$$

In our application, $n \mu=d_{n}-1$ or $n \mu=t=\left\lfloor\frac{d_{n}-1}{2}\right\rfloor$.

Figure 4: Bounds \& relation between rate of the code and fractional minimum distance.(shaded part denotes the region where best code lies)

1.3 The Elias bound

Let \mathcal{C} be a binary code of block length n and minimum distance d.
Let $t \leq \frac{n}{2}$ be an integer.
We want to count the pairs

$$
\left\{(\underline{c}, \underline{x}) \mid \underline{c} \in \mathcal{C}, \underline{x} \in \mathbb{F}_{2}^{n}, d_{H}(\underline{c}, \underline{x}) \leq t\right\}
$$

in two different ways:

$$
\sum_{\underline{x} \in \mathbb{F}_{2}^{n}}|\mathcal{B}(\underline{x}, t) \cap \mathcal{C}|=\sum_{\underline{c} \in \mathcal{C}}|\mathcal{B}(\underline{c}, t)|=|\mathcal{B}(\underline{0}, t)||\mathcal{C}|
$$

\therefore There must exist $\underline{x} \in \mathbb{F}_{2}^{n}$ such that

$$
|\mathcal{B}(\underline{x}, t) \cap \mathcal{C}| \geq \frac{|\mathcal{B}(\underline{0}, t)||\mathcal{C}|}{2^{n}}
$$

To be continued...

Figure 5: Bounds \& relation between rate of the code and minimum fractional distance.

