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1 Bounds on code size

Suppose C is an [n, k] linear perfect code, then we must have
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where ¢ = L%J and d = minimum distance between any two codewords.
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e Suppose a case where n = 23 and k = 12.
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then it suggests that it is a [23,12,7] Golay code.

e Only known perfect codes are as follows:
i. The binary Hamming codes
ii. The [23,12,7] Golay code
iii. Non-binary Hamming codes
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iv. The [11,6,5]3 Ternary code

1.1 The Gilbert-Varshamov lower bound

Theorem. Let M be the largest size of a binary code of block length n and minimum
distance d,,;, = d, then
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Figure 1: GV Bound

Proof. We follow an iterative procedure from Fj. We pick a codeword c¢; on the ith
attempt and throw away all vectors in the ball B(¢;,d — 1) and so on. Clearly we will
reach a point when there are no more vectors left to pick. Let M be the number of
codewords picked up to this point. Then we must have:

MIB(O,d—1)| = 2"

(else we could pick up one more codeword)

1.2 Asymptotic (n — oco) bounds

Long codes make the channel more predictable and hence causing errors introduced by
the channel to be more correctable.

Eg:- Consider the binary symmetric channel. Let the code C have long blocklength n.
Q: How many errors has the channels introduced?

Set X; = 1, if the i** code symbol is in error

= 0, else.
Let,
¢
Y, Lizt , E[Y,] = p.
n
Then,
E[(Yn - M)2]
P(Y, —pl >9) < 7
Now,
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Figure 2: Binary symmetric channel(BSC)

2

o

Set Z, = > Xi, then Pr(z, = k) = (})€"(1—€)"* tends to a Gaussian distribution
by the central limit theorem(CLT).

Mean : E[Z,] = ne
Standard Deviation : 0 = y/ne(l — ¢)
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Figure 3: Gaussian distribution with mean and variance as above



Thus with high probability the number of errors is in a narrow band surrounding the
mean ne. Thus it suffices to use an error-correcting code with d,,;, > 2ne.

set § = lim,, o0 (%)  (Fractional minimum distance)

= 0§ > 2e.

Definition. Give fractional minimum distance 0 < § < 1, let d,, = [nd] and let M (n,J)
be the largest size of a block code of block length n and d,, = d,, = [nd].

log, (M (n.6))

Set rate of the code = R(J) = limsup,,_,

Q : How does R(J) vary with 67

Ans: Tt can be shown that the Hamming and Gilbert-Varshamov bounds imply that
1 — Hy(8) < R(6) < 1— m(g)

where for 0 < 6 < 1,

1 1
Hy(0) = flog, (5> + (1 —0) log, (m) (The binary entropy function).
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In our application, nu =d, — 1 ornu=1t= Ldnz_lJ'
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Figure 4: Bounds & relation between rate of the code and fractional minimum dis-
tance.(shaded part denotes the region where best code lies)



1.3 The Elias bound

Let C be a binary code of block length n and minimum distance d.
Let t < g be an integer.

We want to count the pairs
{(ca)|ceC, zeFy, duy(cz) <t}
in two different ways:

> Bz tynCl=>[B(ct)] = |B(0,t)IC|

z€Fp ceC

.. There must exist 2 € Fy such that

B0, 1)[[C]
2n

B(z,t) NC| =

To be continued...
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Figure 5: Bounds & relation between rate of the code and minimum fractional distance.



