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1 Hamming Bound

Mn ≤
2n∑tn
i=0

(
n
i

)
where tn =

⌊
dn − 1

2

⌋
and dn = dmin at length n.

2 Asymptotic Hamming Bound

R ≤ 1−H2(δ/2)

Essentially since,

lim
n→∞

log2
∑tn

i=0

(
n
i

)
n

= H2

(
lim
n→∞

tn
n

)

As dn = (nδ) so lim
n→∞

dn
n

= δ

3 Gilbert-Varshamov Bound

Mn ≤
2n∑dn−1

i=0

(
n
i

) , where dn = dmin.
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4 Asymptotic G-V Bound

R ≥ 1−H2(δ)

(Via a similar bound)

Over the BSC can achieve

R ≥ 1−H2(2ε)

. But the channel capacity is given by

C = 1−H2(ε)

Figure 1: Bounds

5 Plotkin Bound

Main goal is to show that R(δ)=0, when δ ≥ 1/2.
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Proof. Let C an (n,M, d) code with d = dmin ≥ n
2
i.e, 2d > n.

Consider the matrix AMxn, whose M rows are code words of C. Let the
Hamming weight of the ith column be wi.

Figure 2: Matrix A

Therefore total Hamming weight of A is
∑n

i=1wi.
Let 4ij be the Hamming distance between the ith and jth rows of A.

Then, ∑
1≤i<j≤n

4ij =
n∑
i=1

wi(M − wi)

Example:

Figure 3: Example matrix

∑
1≤i<j≤n

4ij = 2 + 3 + 1 = 6
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n∑
i=1

wi(M − wi) = 2 + 2 + 0 = 6

Note that,

max
0≤w≤M

w(M − w) =

{
M2

4
, if M is odd,(

M−1
2

) (
M+1
2

)
, if M is even.

Also, ∑
j≥i

4ij ≥
(
M

2

)
d

• M is even case (
M

2

)
d ≤

∑
j>i

4ij ≤
nM2

4

M(M − 1)

2
d ≤ nM2

4
2(M − 1)d ≤ nM

M(2d− n) ≤ 2d

M ≤ 2d

2d− n

• M is odd case (
M

2

)
d ≤ n(M2 − 1)

4(
M(M − 1)

2

)
d ≤ n(M2 − 1)

4

2Md ≤ n(M + 1)

M(2d− 1) ≤ n

M ≤ n

2d− n
≤ 2d

2d− n
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In either case: M ≤ 2d
2d−n = 2δ

2δ−1 where δ= d
n
.

lim sup
n→0

log2(Mn) = lim
n→∞

log( 2δ
2δ−1

)

n
= 0

6 Elias Bound

• Let C be an (n,M, d) code with d ≤ n
2
.

• Let t ≤ n
2
be an integer.∑

x∈Fn2

|B(x, t) ∩ C| =
∑
c∈C

|B(c, t)|

• For some x ∈ Fn2 we must have

|B(x, t) ∩ C| ≥ |B(0, t)||C|
2n

=

∑t
i=0

(
n
i

)
M

2n

• From this we know that the existence of an (n,M, d) code implies the

existence of a code C0 that contains ≥
∑t
i=0 (

n
i)M

2n
code words in a ball

of radius t surrounding the origin.

Figure 4: Ball of radius t
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• On the other hand, let p be the maximum number of binary n-tuples
contained in a ball of radius t surrounding the origin such that any 2
are Hamming distance atleast d apart. Form a (p×n) matrix as before
and we have ∑

j>i

4ij ≥
(
p

2

)
d

Also

∑
j>i

4ij =
n∑
j=i

wi(p− wi)

Let

n∑
j=i

wi = pf, where f is average weight of the row (f ≤ t).

Note from the Cauchy Schwarz inequality that

|
n∑
i=1

wi| = |wT1| ≤ ||w|| ||1||

|
n∑
i=1

wi| ≤

√√√√( n∑
i=1

wi
2

)√√√√( n∑
i=1

12

)

(pf)2

n
≤

n∑
i=1

wi
2

p2f −
n∑
i=1

wi
2 ≤ p2f − (pf)2

n∑
j>i

4ij =
n∑
j=i

wi(p− wi) = p2f −
n∑
i=1

wi
2

∴

(
p

2

)
d ≤ p2f − (pf)2

n
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(
p(p− 1)

2

)
d ≤ p2f − (pf)2

n

(p− 1)d ≤ 2pf(1− f

n
)

p(d− 2f + 2
f 2

n
) ≤ d

p ≤ nd

nd− 2nf + 2f 2

p ≤ 2nd

(n− 2t)2 − n(n− 2d)

Let J(δ) ,
1

2
(1−

√
1− 2δ)

Set t = nJ(δ)− 1

t

n
≤ J(δ)

n− 2t ≥ n
√
1− 2δ

Then (n− 2t)2 − n(n− 2d) ≥ 0

But it is an integer,

∴ (n− 2t)2 − n(n− 2d) ≥ 1

∴ p ≤ 2nd, when t = nJ(δ)− 1

∴
M
∑t

i=1

(
n
i

)
2n

≤ p ≤ 2nd

M ≤ 2n2nd∑t
i=1

(
n
i

)
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Figure 5: BSC

Figure 6: Bounded Distance Decoder

7 Asymptotic Elias Bound

lim sup
n→∞

log2Mn

2
≤ 1−H2(J(δ)) = 1−H2(

1

2
(1−

√
1− 2δ))

Let C be an (n, M, d) binary code and set t = d−1
2
. Then a bounded distance

decoder (BDD) for C over the BSC is a decoder that adopts the following
algorithm.

• Let y ∈ Fn2 denote the received vector over the BSC. The decoder
searches for a codeword lying in the ball B(y,t) centered at y. If the
ball contains a codeword C it decodes to C, else declares a decoding
failure.

The BDD approach does not achieve capacity over the BSC since this would
mean employing a code having fractional minimum distance δ = d

n
= 2ε.

This means to achive the capacity we would need that R(δ)=1-H2(
δ
2
).

(i.e We must have a code that asymptotically achieve the Hamming bound
but the Elias upper bound which is strictly tighter than the Hamming bound,
tells that this is impossible).
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