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4 Asymptotic G-V Bound
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Figure 1: Bounds

5 Plotkin Bound

Main goal is to show that R(d)=0, when § > 1/2.



Proof. Let C an (n, M,d) code with d = dpy, > 5 i.e, 2d > n.
Consider the matrix Ay, whose M rows are code words of C. Let the

Hamming weight of the i** column be wj.
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Figure 2: Matrix A

Therefore total Hamming weight of A is Y " | w.
Let Aj; be the Hamming distance between the i and j™ rows of A.

Then,
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Figure 3: Example matrix

> Ay=2+43+1=6

1<i<j<n



> wi(M—w)=2+2+0=6
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Note that,
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6 Elias Bound

Let C be an (n, M, d) code with d < 3.

o Lett < % be an integer.
Y Bz tyncl = |B(c1)|
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e For some z € I} we must have
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e From this we know that the existence of an (n, M, d) code implies the
existence of a code Cy that contains > # code words in a ball

of radius t surrounding the origin.
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Figure 4: Ball of radius ¢



e On the other hand, let p be the maximum number of binary n-tuples
contained in a ball of radius ¢ surrounding the origin such that any 2
are Hamming distance atleast d apart. Form a (p X n) matrix as before
and we have
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Note from the Cauchy Schwarz inequality that
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But it is an integer,
 (n=2t) —n(n—2d) > 1
. p<2nd, whent=nJ(0) —1
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Figure 5: BSC

Figure 6: Bounded Distance Decoder

7 Asymptotic Elias Bound
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Let C be an (n, M, d) binary code and set t = %. Then a bounded distance
decoder (BDD) for C over the BSC is a decoder that adopts the following
algorithm.

o Let y € Fy denote the received vector over the BSC. The decoder
searches for a codeword lying in the ball B(y,t) centered at y. If the
ball contains a codeword C it decodes to C, else declares a aecoding
failure.

The BDD approach does not achieve capacity over the BSC since this would
mean employing a code having fractional minimum distance § = % = 2e.
This means to achive the capacity we would need that R(§)=1-Hs(2).

(i.e We must have a code that asymptotically achieve the Hamming bound
but the Elias upper bound which is strictly tighter than the Hamming bound,
tells that this is impossible).



