E2 205 Error-Control Coding Lecture 9

Srinivas Vankudothu

September 11, 2019

1 Hamming Bound

$$M_n \leq \frac{2^n}{\sum_{i=0}^{t_n} \binom{n}{i}}$$

where $t_n = \left\lfloor \frac{d_n - 1}{2} \right\rfloor$ and $d_n = d_{\min}$ at length n.

2 Asymptotic Hamming Bound

$$R \le 1 - H_2(\delta/2)$$

Essentially since,

$$\lim_{n \to \infty} \frac{\log_2 \sum_{i=0}^{t_n} \binom{n}{i}}{n} = H_2 \left(\lim_{n \to \infty} \frac{t_n}{n} \right)$$

As $d_n = (n\delta)$ so $\lim_{n \to \infty} \frac{d_n}{n} = \delta$

3 Gilbert-Varshamov Bound

$$M_{\mathrm{n}} \leq \frac{2^{n}}{\sum_{i=0}^{d_{\mathrm{n}}-1} {n \choose i}}, \ where \ d_{\mathrm{n}} = d_{\mathrm{min}}.$$

4 Asymptotic G-V Bound

 $R \ge 1 - H_2(\delta)$

(Via a similar bound)

Over the BSC can achieve

$$R \ge 1 - H_2(2\epsilon)$$

. But the channel capacity is given by

$$C = 1 - H_2(\epsilon)$$

Figure 1: Bounds

5 Plotkin Bound

Main goal is to show that $R(\delta)=0$, when $\delta \geq 1/2$.

Proof. Let \mathcal{C} an (n, M, d) code with $d = d_{\min} \geq \frac{n}{2}$ i.e, 2d > n. Consider the matrix A_{Mxn} , whose M rows are code words of \mathcal{C} . Let the Hamming weight of the i^{th} column be w_i .

Figure 2: Matrix A

Therefore total Hamming weight of A is $\sum_{i=1}^{n} w_i$. Let Δ_{ij} be the Hamming distance between the ith and jth rows of A. Then,

$$\sum_{1 \le i < j \le n} \triangle_{ij} = \sum_{i=1}^n w_i (M - w_i)$$

Example:

1	0	1	1
0	1	1	1
0	1	1	0

Figure 3: Example matrix

$$\sum_{1 \le i < j \le n} \triangle_{ij} = 2 + 3 + 1 = 6$$

$$\sum_{i=1}^{n} w_{i}(M - w_{i}) = 2 + 2 + 0 = 6$$

Note that,

$$\max_{0 \le w \le M} w(M - w) = \begin{cases} \frac{M^2}{4}, & \text{if M is odd,} \\ \left(\frac{M-1}{2}\right) \left(\frac{M+1}{2}\right), & \text{if M is even.} \end{cases}$$

Also,

$$\sum_{j\geq i} \triangle_{ij} \geq \binom{M}{2} d$$

• M is even case

$$\binom{M}{2}d \leq \sum_{j>i} \triangle_{ij} \leq \frac{nM^2}{4}$$
$$\frac{M(M-1)}{2}d \leq \frac{nM^2}{4}$$
$$2(M-1)d \leq nM$$
$$M(2d-n) \leq 2d$$
$$M \leq \frac{2d}{2d-n}$$

• M is odd case

$$\binom{M}{2}d \leq \frac{n(M^2-1)}{4}$$
$$\binom{M(M-1)}{2}d \leq \frac{n(M^2-1)}{4}$$
$$2Md \leq n(M+1)$$
$$M(2d-1) \leq n$$
$$M \leq \frac{n}{2d-n} \leq \frac{2d}{2d-n}$$

In either case: $M \le \frac{2d}{2d-n} = \frac{2\delta}{2\delta-1}$ where $\delta = \frac{d}{n}$. $\limsup_{n \to 0} \log_2(M_n) = \lim_{n \to \infty} \frac{\log(\frac{2\delta}{2\delta-1})}{n} = 0$

6 Elias Bound

- Let \mathcal{C} be an (n, M, d) code with $d \leq \frac{n}{2}$.
- Let $t \leq \frac{n}{2}$ be an integer.

$$\sum_{\underline{x}\in\mathbb{F}_2^n} |\mathcal{B}(\underline{x},t)\cap\mathcal{C}| = \sum_{\underline{c}\in\mathcal{C}} |\mathcal{B}(\underline{c},t)|$$

• For some $\underline{x} \in \mathbb{F}_2^n$ we must have

$$|\mathcal{B}(\underline{x},t) \cap \mathcal{C}| \ge \frac{|\mathcal{B}(\underline{0},t)||\mathcal{C}|}{2^n} = \frac{\sum_{i=0}^t {\binom{n}{i}M}}{2^n}$$

• From this we know that the existence of an (n, M, d) code implies the existence of a code C_0 that contains $\geq \frac{\sum_{i=0}^{t} {n \choose i} M}{2^n}$ code words in a ball of radius t surrounding the origin.

Figure 4: Ball of radius t

• On the other hand, let p be the maximum number of binary *n*-tuples contained in a ball of radius t surrounding the origin such that any 2 are Hamming distance atleast d apart. Form a $(p \times n)$ matrix as before and we have

$$\sum_{j>i} \triangle_{ij} \ge \binom{p}{2}d$$

Also

$$\sum_{j>i} \triangle_{ij} = \sum_{j=i}^{n} w_i (p - w_i)$$

Let

$$\sum_{j=i}^{n} w_{i} = pf, \text{ where f is average weight of the row } (f \leq t).$$

Note from the Cauchy Schwarz inequality that

$$\begin{split} |\sum_{i=1}^{n} w_{i}| &= |\underline{w}^{T}\underline{1}| \leq ||w|| \, ||\underline{1}|| \\ |\sum_{i=1}^{n} w_{i}| \leq \sqrt{\left(\sum_{i=1}^{n} w_{i}^{2}\right)} \sqrt{\left(\sum_{i=1}^{n} 1^{2}\right)} \\ &\frac{(pf)^{2}}{n} \leq \sum_{i=1}^{n} w_{i}^{2} \\ p^{2}f - \sum_{i=1}^{n} w_{i}^{2} \leq p^{2}f - \frac{(pf)^{2}}{n} \\ &\sum_{j>i} \triangle_{ij} = \sum_{j=i}^{n} w_{i}(p - w_{i}) = p^{2}f - \sum_{i=1}^{n} w_{i}^{2} \\ &\therefore \ \binom{p}{2}d \leq p^{2}f - \frac{(pf)^{2}}{n} \end{split}$$

$$\begin{split} \left(\frac{p(p-1)}{2}\right) & d \leq p^2 f - \frac{(pf)^2}{n} \\ & (p-1)d \leq 2pf(1-\frac{f}{n}) \\ & p(d-2f+2\frac{f^2}{n}) \leq d \\ & p \leq \frac{nd}{nd-2nf+2f^2} \\ & p \leq \frac{2nd}{(n-2t)^2 - n(n-2d)} \\ & \text{Let } J(\delta) \triangleq \frac{1}{2}(1-\sqrt{1-2\delta}) \\ & \text{Set } t = nJ(\delta) - 1 \\ & \frac{t}{n} \leq J(\delta) \\ & n-2t \geq n\sqrt{1-2\delta} \\ & \text{Then } (n-2t)^2 - n(n-2d) \geq 0 \end{split}$$

But it is an integer,

$$\therefore (n-2t)^2 - n(n-2d) \ge 1$$

$$\therefore p \le 2nd, \text{ when } t = nJ(\delta) - 1$$

$$\therefore \frac{M\sum_{i=1}^t \binom{n}{i}}{2^n} \le p \le 2nd$$

$$M \le \frac{2^n 2nd}{\sum_{i=1}^t \binom{n}{i}}$$

Figure 5: BSC

Figure 6: Bounded Distance Decoder

7 Asymptotic Elias Bound

$$\limsup_{n \to \infty} \frac{\log_2 M_n}{2} \le 1 - H_2(J(\delta)) = 1 - H_2(\frac{1}{2}(1 - \sqrt{1 - 2\delta}))$$

Let C be an (n, M, d) binary code and set $t = \frac{d-1}{2}$. Then a bounded distance decoder (BDD) for C over the BSC is a decoder that adopts the following algorithm.

• Let $\underline{y} \in \mathbb{F}_2^n$ denote the received vector over the BSC. The decoder searches for a codeword lying in the ball B(y,t) centered at y. If the ball contains a codeword \underline{C} it decodes to \underline{C} , else declares a decoding failure.

The BDD approach does not achieve capacity over the BSC since this would mean employing a code having fractional minimum distance $\delta = \frac{d}{n} = 2\epsilon$. This means to achive the capacity we would need that $R(\delta)=1-H_2(\frac{\delta}{2})$.

(i.e We must have a code that asymptotically achieve the Hamming bound but the Elias upper bound which is strictly tighter than the Hamming bound, tells that this is impossible).