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Abstract

Global Navigation Satellite Systems (GNSS) employ low-correlation sequences, termed as spreading codes, to
distinguish between the signals transmitted by the different satellites. The spreading codes commonly employed have
period that is a multiple of 1023, as the fundamental frequency associated with the navigation signals generated
onboard all of these systems is 10.23 MHz, derived using highly-stable atomic clocks. The principal contribution of
the paper is the construction of a family JNAV, of low-correlation, binary sequences having period 10230, derived by
interleaving a selected set of 5 Z4-Linear sequences of period 2046 followed by flipping or complementing, a subset
of the interleaved sequences. Sequence selection is based on the value of an exponential sum over a Galois ring
and interleaving is carried out using the Chinese Remainder Theorem. The period 10230 is of particular interest,
as it is the period of the spreading codes employed by major GNSS currently in operation. The JNAV spreading
code family turns in competitive performance when compared to existing designs including a 4.5 dB improvement
in worst-case, even-correlation properties. Additional techniques are employed to ensure that Family JNAV has other
desirable attributes of a GNSS spreading code such as low values of odd-correlation, an orthogonality property and
a simple, shift-register-based implementation.

The construction is shown to be a special instance of a general select, interleave and flip approach to construction
that generates families of balanced, low-correlation interleaved Z4-linear sequences having period 10(2m − 1) for
m = 2 (mod 4) and 14(2m − 1) for m = 2, 4 (mod 6). By replacing the constituent Z4-linear sequences with
Family A quaternary sequences, the same approach can be used to construct low-correlation, interleaved quaternary
sequence families Q5,BAL, Q7,BAL having period 5(2m − 1) with m = 2 (mod 4) and 7(2m − 1) with m = 2, 4
(mod 6).

Index Terms: Low-correlation sequences, Z4-linear sequences, quaternary sequences, GNSS, CDMA sequences,
interleaved sequences, global navigation satellite systems, spreading codes, NavIC.

I. INTRODUCTION

The principal sequence family JNAV constructed in this paper is relevant to Global Navigation Satellite Systems
(GNSS). Some background on such systems is provided below.

A. Satellite-Based Navigation Systems

Satellite-based navigation systems provide accurate positioning, time and velocity information of a user by
determining the distance of the user from a collection of four or more satellites. This distance computation is
carried out by determining the time lag between the signal transmitted by the satellite and the replica present
in the user’s receiver. This estimate of time lag in turn, relies upon the auto and cross-correlation properties of
the family of pseudorandom sequences termed as spreading codes, transmitted by the satellites, and which enable
satellite-signal acquisition and tracking.

A list of current satellite-based navigation systems appears in Table I. The fundamental frequency associated with
the navigation signals generated onboard all of these systems is 10.23 MHz, and this is derived using highly-stable
atomic clocks. As a result, for convenience in time measurement, the periods of the spreading codes employed
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are a multiple of 1023, as can be seen from Table II. Thus there is interest within the GNSS community, in the
construction of spreading codes having period that is of this form. We shall interchangeably use the terms sequence
length and sequence period throughout the paper. Table II also provides additional detail about the spreading codes
employed, including their method of generation and frequency band of operation.

Table I: Principal Satellite-Based Navigation Systems†.

System GPS GLONASS BDS GALILEO NavIC QZSS

Nominal 24 24 35 30 7 4
Constellation Size

Frequency Bands L1, L2, L5 L1, L2, L3 B1, B2, B3 E1, E5a, E5b, E6 L1, L5, S L1, L2, L5, E6

† GPS: Global Positioning System (US), GLONASS: Globalnaya Navigazionnaya Sputnikovaya Sistema (Russia), BDS: BeiDou
Navigation Satellite System (China), GALILEO (EU), NavIC:Navigation with Indian Constellation (India), and QZSS: Quasi-Zenith

Satellite System, (Japan).

Table II: Length and nature of spreading codes employed by different satellite-based navigation systems.

Sl.
No.

Satellite-Based
Navigation Signal

Code
Length

Multiple
of 1023

Code Generation Method Frequency
Band

Center
Frequency
(MHz)

1 GPS L1 C/A 1023 1 Gold code (10-bit SRs) L1 1575.42
2 NavIC L5 1023 1 Gold codes (10-bit SRs) L5 1176.45
3 NavIC S 1023 1 Gold codes (10-bit SRs) S 2492.028
4 BDS B1I 2046 2 Truncated Gold codes (11-bit SRs) B1 1561.098
5 BDS B2I 2046 2 Truncated Gold codes (11-bit SRs) B2 1207.14
6 Galileo E1B 4092 4 Memory/Random code E1 1575.42
7 Galileo E1C 4092 4 Memory/Random code E1 1575.42
8 Galileo E6B 5115 5 pseudo-random memory code sequences E6 1278.750
9 Galileo E6C 5115 5 pseudo-random memory code sequences E6 1278.750
10 GPS L1C 10230 10 Weil sequences of period 10223 with 7-bit

padding
L1 1575.42

11 GPS L2 CM 10230 10 Short-cycled output of a 27-bit SR m-
sequence

L2 1227.60

12 GPS L5 10230 10 Modulo 2 sum of two 13-bit SRs L5 1176.45
13 Galileo E5a (I and

Q)
10230 10 Two truncated and combined m-sequences

from 14-bit SR
E5a 1176.45

14 Galileo E5b (I and
Q)

10230 10 Two truncated and combined m-sequences
from 14-bit SR

E5b 1207.14

15 GLONASS L1OC 10230 10 Truncated Kasami codes (small set) (12, 6-
bit SRs)

L1 1600.995

16 GLONASS
L2OCp

10230 10 Truncated Kasami codes (small set) (12, 6-
bit SRs)

L2 1248.06

17 BDS B1C 10230 10 Truncated Weil sequences of period 10243
with 13-bit deletion

B1 1575.42

18 BDS B2a 10230 10 Modulo 2 sum of two 13-bit SRs B2a 1176.45
19 BDS B3I 10230 10 Modulo 2 sum of two 13-bit SRs B3 1268.52
20 NavIC L1 (design

presented here)
10230 10 Interleaved Z4-Linear (IZ4) Sequence

Family JNAV

L1 1575.42

21 GPS L2 CL 767250 750 Short-cycled output of a 27-bit SR m-
sequence

L2 1227.60

B. Performance Measures Relevant to GNSS
Performance measures that are relevant in the context of a GNSS setting, are even and odd-correlation properties,

symbol balance, and pairing of the sequence set into pairs that are orthogonal when in-phase. These performance
measures are described in more detail below.



Let J =
{
{J (a)(t)}a∈[M ]

}
be a family of M binary {0, 1} sequences, each of period L, where for an integer

k ≥ 1, we use [k] to denote the set {0, 1, 2, · · · , k − 1}.
a) Sequence Period: As noted in Table II above, GNSS currently call for families of sequences whose length

or period L, is an integer multiple L = `(1023) of 1023. On the other hand, most sequence designs rely upon
the theory of finite fields. As a result, the period of the sequences so designed, is related to the size of the finite
field. The families of Gold, Kasami, Bent and No sequences [1]–[4], [7], [8] all have period of the form (2k − 1)
for some integer k ≥ 2. Z4-linear sequences [9]–[15], which make use of the related theory of Galois rings, have
period that is twice this number, i.e., of the form 2(2k − 1). The sequence designs by Gong [16] have period of
the form p2 or (pk − 1)2 for p prime. The design by Paterson [17] has period that of the form p2 for p prime.
Thus the options for sequence length are somewhat limited, and constructing sequences having the desired period
L = `(1023) for ` > 2 becomes a challenging problem. A principal focus of the present paper is on the case
` = 10, corresponding to the period 10230 widely used in the satellite-based navigation setting (see Table II), and
this is discussed in detail below.

b) Even-Correlation: The even correlation of a pair of sequences {J (a)(t)}, {J (b)(t)} at shift τ , is given by

Ω(a, b, τ) =

L−1∑
t=0

(−1)J
(a)(t+τ)−J(b)(t), (1)

where the sum (t + τ) is computed modulo the period L. An even correlation is referred to as an even auto or
an even cross-correlation depending upon whether a = b or not respectively. The maximum out-of-phase even
autocorrelation magnitude and the maximum even cross-correlation magnitude will be denoted by the symbols
Ωa,max and Ωc,max respectively:

Ωa,max := max
a∈[M ]

{ |Ω(a, a, τ)| | τ ∈ [L], τ 6= 0} , (2)

Ωc,max := max
a,b∈[M ],
a6=b

{ |Ω(a, b, τ)| | τ ∈ [L]} . (3)

By maximum nontrivial (even) correlation magnitude, we will mean the quantity Ωmax defined by

Ωmax = max {Ωa,max, Ωc,max} . (4)

c) Odd Correlation: The aperiodic correlation Ω̂(a, b, τ) of a pair of binary sequences {J (a)(t)}, {J (b)(t)} at
shift τ , is given by

Ω̂(a, b, τ) =

{∑L−1−τ
t=0 (−1)J

(a)(t+τ)−J(b)(t), 0 ≤ τ ≤ (L− 1),∑L−1
t=−τ (−1)J

(a)(t+τ)−J(b)(t), −(L− 1) ≤ τ < 0.
(5)

An aperiodic correlation is referred to as an aperiodic autocorrelation or else an aperiodic cross-correlation depending
upon whether a = b or not respectively. The even and aperiodic correlation functions of a pair of sequences having
period L, are related by

Ω(a, b, τ) = Ω̂(a, b, τ) + Ω̂(a, b, τ − L), 0 ≤ τ ≤ (L− 1).

The odd-correlation function of a pair of periodic binary sequences {J (a)(t)}, {J (b)(t)} having period L, at shift
τ is defined by

Ω(odd)(a, b, τ) = Ω̂(a, b, τ) − Ω̂(a, b, τ − L), 0 ≤ τ ≤ (L− 1),

=

L−1−τ∑
t=0

(−1)J
(a)(t+τ)−J(b)(t) −

L−1∑
t=L−τ

(−1)J
(a)(t+τ)−J(b)(t), 0 ≤ τ ≤ (L− 1).

Odd correlations arise when the spreading code is modulated using Binary Phase-Shift-Keying (BPSK), by a data
sequence whose bit duration is equal to an entire period or a multiple of an entire period, of the spreading code,
and where the window of length L chips over which correlation takes place, corresponds to two adjacent data bits
having opposing signs. We use the term chip to denote the time duration of a symbol in the transmitted spreading
code.



An odd correlation is referred to as an odd autocorrelation or else an odd cross-correlation depending upon
whether a = b or not respectively. Lowering odd-correlation values is of importance since, when one is trying
to align the spreading code in the receiver to the incoming spreading code, and the incoming spreading code
while periodic, is modulated by data, the correlations that impact receiver performance are odd correlations rather
than even correlations. The maximum auto and cross-correlation magnitudes in the case of odd correlation will be
denoted by the symbols denoted by Ω

(odd)
a,max and Ω

(odd)
c,max respectively. Thus we have:

Ω
(odd)
a,max := max

a∈[M ]

{
|Ω(odd)(a, a, τ)|τ ∈ [L], τ 6= 0

}
, (6)

Ω
(odd)
c,max := max

a,b∈[M ],
a6=b

{
|Ω(odd)(a, b, τ)| | τ ∈ [L]

}
. (7)

In the GNSS literature, the quantities Ωa,max, Ωc,max, Ω
(odd)
a,max, Ω

(odd)
c,max are respectively referred to as Even ACR

(EACR), Even CCR (ECCR), Odd ACR (OACR), and odd CCR (OCCR). Thus, we have:

EACR := Ωa,max, ECCR := Ωc,max, OACR := Ω
(odd)
a,max, OCCR := Ω

(odd)
c,max. (8)

d) Balance: It is also desirable that the sequences employed in a GNSS system be balanced as far as possible.
The symbol balance of a binary sequence {J(t)} of period L is defined to be the numerical value

|
L−1∑
t=0

(−1)J(t) | = | L − 2

L−1∑
t=0

wH(J(t)) |, (9)

where the real-valued Hamming-weight function wH(·) satisfies wH(J(t)) = 0 if J(t) = 0, and wH(J(t)) = 1 if
J(t) = 1. It follows that if the value of the symbol balance equals b, the number of zeros and ones in each period
of {J(t)} differs by an amount b. In particular, if b = 0, this implies that L is even and that the number of zeros
and ones is the same in each period, i.e., the sequence is perfectly balanced.

e) Orthogonal Pairs: Another property that is desired in a GNSS setting, is the orthogonal-pairs property.
This property requires that the designed family should permit a pairing{

{J (a)(t)} | a ∈ [M ]
}

=⇒
{(
{Jai(t)}, {Jbi(t)}

)
| i ∈ [M/2]

}
,

such that the in-phase correlation,
L−1∑
t=0

(−1)J
(ai)(t)+J(bi)(t), (10)

is for every pair, of very small magnitude. The need for this last property, which we will term as the orthogonal-pairs
property, arises because each satellite is assigned a pair of sequences corresponding to data and pilot. Typically
the pilot signal is used to aid synchronization, while the data signals is used to communicate information. Since
these two signals are received in synchronization at the receiver, orthogonality of the data and pilot signals when
in phase, is used to ensure that neither sequence poses an interference to the other. The pilot signal is modulated
by a known secondary pseudorandom code called the overlay code, to assist in tracking after acquisition has taken
place, while the data sequence is modulated by low-rate, navigational data.

C. Principal Contribution

The principal contribution of the paper is the construction of a family JNAV of low-correlation binary sequences
having period 10230. The family is constructed via a Select, Interleave and Flip (S-I-F) approach. The two-step
S-I-F approach may be described as follows. In the first step, a set of 5 Z4-linear sequences of period 2046 are
selected based on the value of an exponential sum over a Galois ring, and then interleaved using the Chinese
Remainder Theorem. In the second step, a subset of the sequences selected for interleaving are then flipped or
complemented. The selection prior to interleaving is carried out to ensure low correlation properties. The flipping
operation is aimed at improving symbol balance and is defined below.



Definition 1. By flipping or complementing a binary sequence {s(t)} of period P , we mean replacing

{(−1)s(t)}P−1
t=0 by {(−1)× (−1)s(t)}P−1

t=0 = {(−1)s(t)+1}P−1
t=0 .

By flipping or complementing a quaternary sequence {s(t)} of period P , i.e., a sequence having symbol alphabet
Z4 of period P , we mean replacing

{ıs(t)}P−1
t=0 by {(−1)× ıs(t)}P−1

t=0 = {ıs(t)+2}P−1
t=0 .

A more detailed overview of the construction of Family JNAV is presented in the next section, Section II. As can
be seen from Table II, the period 10230 is of particular interest, as it is the period of the spreading codes employed
by major satellite-based navigation systems currently in operation. Table III presents a tabular comparison of the
properties of Family JNAV in comparison with spreading-code designs employed by GPS and BDS. To our knowledge,
the properties of the GPS and BDS families improve upon corresponding of other satellite-based navigation systems
employing the same period 10230. The spreading codes employed by both GPS as well as BDS are based upon
the family of Weil sequences [18]–[21], [24]. The maximum correlation magnitudes appearing in the table, are
presented in 3 formats: as an integer, normalized to

√
L, where L = 10230 and in dB where the dB value is

derived from

x in dB = 20 log
( x

10230

)
.

The normalization with respect to
√
L is carried out because for large family size M and block length L, the Welch

lower bound [30]

Ωmax ≥ L

√
M − 1

ML− 1
,

on maximum even-correlation magnitude, approaches the value
√
L. The lower the magnitudes of cross-correlation

and out-of-phase auto correlation, the better is the performance in terms of signal acquisition and resistance to inter-
channel interference. Equivalently, the more negative the value in dB, the better the performance. The numerical
values appearing in Table III are based on our MATLAB simulations and agree with the results presented in [22]
and [26].

As can be seen from the table, Family JNAV turns in competitive performance when compared to existing designs.
While the EACR, OACR, OCCR, sequence imbalance and orthogonality properties are comparable, Family JNAV

achieves a 4.5 dB improvement in ECCR. The low even-correlation values of Family JNAV are obtained by exploiting
a closed-form expression for an exponential sum over a Galois ring. Additional techniques are employed to ensure
that the Family JNAV has other desirable attributes such as symbol balance, low values of odd-correlation and a
simple, shift-register-based implementation. Sequences within the family can also be paired such that sequences
within a pair are orthogonal when in phase 1.

D. Additional Contributions

With respect to even-correlation and balance properties, it is shown that Family JNAV is a special instance of a
more general family, Family J5,BAL, of balanced, low-correlation binary sequences having period L = 10(2m − 1)
for m = 2 (mod 4), that is also constructed by following the S-I-F approach.

It is additionally shown that the same approach can be applied to construct families of
1) balanced, low-correlation, binary sequence families J7,BAL having period of the form L = 14(2m − 1) for

m = 2, 4 (mod 6),
2) low-correlation, quaternary sequence families Q5,BAL having period of the form L = 5(2m − 1) for m = 2

(mod 4), and
3) low-correlation, quaternary sequence families Q7,BAL having period of the form L = 7(2m − 1) for m = 2, 4

(mod 6).

1The spreading code family JNAV has been incorporated into the L1 band Standard Positioning Service signal of the Indian Space Research
Organization’s NavIC (Navigation with Indian Constellation) satellite system, see [25].



Table III: Comparing performance of the Interleaved Z4-linear (IZ4) Sequence Family JNAV with that of the primary
codes employed by GPS and BDS in the L1 band.

Performance IZ4 Family GPS L1C BDS
Parameter JNAV codes B1C codes

266 282 282
EACR = 2.63

√
L = 2.79

√
L = 2.79

√
L

= -31.7 dB = -31.19 dB = -31.19 dB
266 446 442

ECCR = 2.63
√
L = 4.41

√
L = 4.37

√
L

= -31.7 dB = -27.21dB = -27.29 dB
330 406 282

OACR = 3.26
√
L = 4.01

√
L = 2.79

√
L

= -29.83 dB = -28.03 dB = -31.19 dB
484 500 442

OCCR = 4.79
√
L = 4.94

√
L = 4.37

√
L

= -26.5 dB = -26.22 dB = -27.29 dB
Sequence Imbalance 0 or 2 0 0

Orthogonality 0 2 2

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

Interleaved Z4-Linear Sequence Families (IZ4)

Interleaved Quaternary Sequence Families (IQS)

Z4-Linear

Sequence

Family K

Quaternary

Sequence

Family A

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

Interleaved Z4-Linear Sequence Families (IZ4)

Interleaved Quaternary Sequence Families (IQS)

Z4-Linear

Sequence

Family K

Quaternary

Sequence

Family A

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

Interleaved Z4-Linear

Sequences (IZ4)

Interleaved Quaternary

Sequences (IQS)

Z4-Linear

Sequence

Family K

Quaternary

Sequence

Family A

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

JNAV

J5,BAL

J7,BAL

Q5,BAL

Q7,BAL

Interleaved Z4-Linear

Sequences (IZ4)

Interleaved Quaternary

Sequences (IQS)

Z4-Linear

Sequence
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Quaternary

Sequence

Family A
select,
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interleave
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Figure 1: The four sequence families arising from the Select, Interleave and Flip (S-I-F) approach to sequence
construction in this paper. Family JNAV is an instance of Family J5,BAL corresponding to m = 10, i.e., period
10230. The binary Interleaved Z4-linear sequence families, i.e., IZ4 sequence families, J5,BAL, J7,BAL on the left,
are obtained by applying the S-I-F approach to binary sequence Family K. The Interleaved Quaternary Sequence
families, i.e., IQS sequence families Q5,BAL, Q7,BAL on the right, are obtained by applying the S-I-F approach to
quaternary sequence Family A.

In the case of the quaternary sequence families, when employing the S-I-F approach, we interleave sequences drawn
from Family A quaternary sequences in place of the binary sequence family K, see Fig. 1. Quaternary sequence
families Q5,BAL and Q7,BAL are approximately balanced, and the symbol balance value is identical to that of Family A
and is on the order of the square root of the period of the sequence family, see Table IV below.

Definition 2. We will refer to any binary sequence family such as Families JNAV, J5,BAL, J7,BAL obtained by interleaving
a collection of Z4-linear sequences as an Interleaved Z4-linear sequence family, or in abbreviated form, as an IZ4
family.

Definition 3. We will refer to any quaternary sequence family such as Families Q5,BAL, Q7,BALobtained by interleaving
a collection of quaternary sequences, i.e., sequences having Z4 as their symbol alphabet, as an Interleaved
Quaternary Sequence family, or in abbreviated form, as an IQS family.



Parameters of the four sequence families constructed here are listed in Table IV.

Table IV: The select-and-interleave approach presented here can be used to generate the sequences having periods
and correlation performance as shown in the table. The quantities ρ5, ρ7 appearing in the table, are given by,
ρ5 =

√
(5 + (4× 2m/2))2 + 2m and ρ7 =

√
(7 + (5× 2m/2))2 + (2× 2m/2)2.

Sequence Symbol Code Parameter Family Maximum Asymptotic Symbol
Family Alphabet Length Constraint Size Correlation Value of Balance

L Magnitude Ωmax Ωmax

J5,BAL Binary 10× (2m − 1) m = 2 (mod 4) 2b 2
m−2

3
c (8× 2m/2) + 10 2.53

√
L 2

m ≥ 6

J7,BAL Binary 14× (2m − 1) m = 6k + ` 2m−3 (10× 2m/2) + 14 2.67
√
L 2

` ∈ {2, 4}
m ≥ 4

Q5,BAL Quaternary 5× (2m − 1) m = 2 (mod 4) b 2
m

5
c ρ5 1.84

√
L (1 + 2m/2)

m ≥ 6

Q7,BAL Quaternary 7× (2m − 1) m = 6k + ` 2m−3 ρ7 2.04
√
L (1 + 2m/2)

` ∈ {2, 4}
m ≥ 4

E. Outline of the Paper

An overview of the select, interleave and flip (s-i-f) approach to constructing sequence families J5,BAL, J7,BAL,
Q5,BAL and Q7,BAL is provided in Section II. The Z4-linear Family K from which the sequences being interleaved
are drawn, is introduced in Section III. The correlation properties of K are studied in Section IV, and a closed-
form expression for correlation values is provided. The construction of binary sequence family J5,LEC is presented
in Section V. A closed-form expression for the correlation values of Family J5,LEC is provided in Section VI.
A significantly improved upper bound on even-correlation values appears in the subsequent section, Section VII.
Family J5,BAL that has symbol balance to within 2 and the same correlation properties as Family J5,LEC is presented
in Section VIII. The next two sections, Section IX and Section X deal with an instance of Family J5,BAL, namely
Family JNAV, having period 10230, that is well-suited to GNSS applications in terms of having low values of
odd-correlation and satisfying the orthogonal-pairs property. The approach adopted to construct JNAV is presented
in Section IX. It is shown in Section X, that Family JNAV admits a simple, shift-register-based implementation. The
next section, Section XI, shows how the same S-I-F approach can be used to generate the low-correlation sequence
families J7,BAL, Q5,BAL and Q7,BAL. Background on Galois rings and on a relevant exponential sum is provided in the
Appendix.

II. OVERVIEW OF THE SEQUENCE-FAMILY CONSTRUCTIONS

As noted in the prior section,
• the principal contribution here, is the construction of a binary sequence family, Family JNAV having period
L = 10230, obtained by interleaving a collection of 5 Z4-linear sequences, each of period 10230, and that

• this construction is shown to be a specific instance of a general S-I-F approach that generates the four sequence
families J5,BAL, J7,BAL, Q5,BAL and Q7,BAL that are listed in Table IV.

Before providing additional detail, we present some background.

A. Z4-linear sequences and the MSB-Gray Map

Given an element s ∈ Z4, of the form s = u + 2v, u, v ∈ {0, 1}, we will refer to binary values u, v as the
least significant bit (LSB) and most significant bit (MSB) respectively, of s. Note that the MSB map defined by
MSB(s) = v, is a nonlinear map. We define a Z4-linear sequence to be any binary {0, 1} sequence {Kj(t)} that
can be expressed in the form

K(t) = MSB
{

3tQ(t)
}
, all t, (11)



where {Q(t)} is a quaternary sequence that has odd period n and that satisfies a recursion over Z4 of the form

Q(t) =

d∑
i=1

ci Q(t− i), d ≥ 1, ci ∈ Z4. (12)

We shall refer to a recursion of the form in (12) as a linear recursion. We will refer to the map

GMSB : {Q(t)} → {K(t)}, (13)

mapping a quaternary sequence {Q(t)} having odd period n to a binary sequence {Kj(t)} via equation (11) as the
MSB-Gray map for reasons that will become clear in Section III. Clearly, {K(t)} is periodic with period dividing
2n. Low-correlation families of Z4-linear sequences can be found discussed in [9]–[14]. The specific family K of
low-correlation Z4-linear sequences that we make use of in this paper have period 2(2m− 1) with m even, and are
referred to in [14] as Generalized Udaya-Siddiqi Sequences. This sequence family may be regarded as an extension
to the case of even exponent m, of sequence families described in [9], [11], [12]. Relevant parameters of Family
K appear below.

Sequence Symbol Code Relevant Family Maximum Asymptotic
Family Alphabet Length R Parameter Size Correlation Value

Constraint Magnitude Ωmax of Ωmax

K Binary {0, 1} R = 2(2m − 1) m even 2m 1 + 2m/2+1
√

2
√
R

B. Quaternary Sequence Family A
By a quaternary sequence family, we will mean a sequence family having symbol alphabet Z4. Quaternary

sequences are associated to Quaternary Phase-Shift Keying (QPSK) modulation in the same way:

a ∈ Z4 → cos
(
2πf0t + a

π

2

)
,

as binary sequences are associated to BPSK modulation. Here, f0 denotes the carrier frequency. As an example
of their application in practice, quaternary sequence family, Family S(2) constructed in [23] was part of the 3G
WCDMA cellular communication standard.

If Q =
{
{Q(a)(t)}a∈[M ]

}
is a family of M quaternary sequences over Z4, each of period n, then the even

correlation of a sequence pair {Q(a)(t)}, {Q(b)(t)} at shift τ , is given by

Ω(a, b, τ) =

n−1∑
t=0

(ı)Q
(a)(t+τ)−Q(b)(t), (14)

where the sum (t+ τ) is computed modulo the period n. Quaternary sequence Family A [33], [34] is an efficient
family of low-correlation sequences having the parameters listed below:

Sequence Symbol Code Relevant Family Maximum Asymptotic
Family Alphabet Length n Parameter Size Correlation Value

Constraint Magnitude Ωmax of Ωmax

A Quaternary Z4 n = (2m − 1) m odd or even 2m + 1 1 + 2m/2
√
n

C. Rectangular Interleaving

Let {{Ui(t)}p−1
t=0 | 0 ≤ i ≤ q − 1}} be a set of q sequences, each having common period p that are being

interleaved, then the sequence {J(t)} obtained via rectangular interleaving is defined to be given by

J(t) := Uj(`),

where the pair (j, `) are uniquely recovered from t using the q-ary decomposition

t = q`+ j, 0 ≤ j ≤ (q − 1), 0 ≤ ` ≤ (p− 1).



This is illustrated below for the case q = 3, p = 7.

{U0(t)} {U1(t)} {U2(t)}
U0(0) U1(0) U2(0)

U0(1) U1(1) U2(1)

U0(2) U1(2) U2(2)

U0(3) U1(3) U2(3)

U0(4) U1(4) U2(4)

U0(5) U1(5) U2(5)

U0(6) U1(6) U2(6)

rectangular
=⇒

interleaving

{J(t)}
J(0) J(1) J(2)

J(3) J(4) J(5)

J(6) J(7) J(8)

J(9) J(10) J(11)

J(12) J(13) J(14)

J(15) J(16) J(17)

J(18) J(19) J(20)

D. CRT-Based Interleaving

The form of interleaving employed in our IZ4 construction is based on the Chinese Remainder Theorem (CRT).
The reason for employing CRT-based interleaving is because such an interleaving makes the problem of constructing
an interleaved sequence set with reduced correlation values more tractable, as will shortly be explained (see Remark 4
in Section VI). Once again, let (p, q) be a pair of integers ≥ 2, where we require this time, that (p, q) are relatively
prime. Let r = pq. Since (p, q) are relatively prime, it follows that the map from Zr → Zp × Zq given by

t ⇒ (`, j)

with

` = t (mod p), j = t (mod q),

provides a 1-1 correspondence between integers t ∈ Zr and pairs (`, j) ∈ Zp×Zq. Let {{Ui(t)}p−1
t=0 | 0 ≤ i ≤ q−1}}

be as before, a set of q sequences, each having common period p that are being interleaved, then the sequence
{J(t)} obtained via CRT-based interleaving is defined to be given by

J(t) := Uj(`), where ` = t (mod p), j = t (mod q).

Since (p, q) = 1, it follows that {J(t)} has period r = pq. An analogous example showing the CRT-based
interleaving of q = 3 sequences, each of period p = 7, to yield a single interleaved sequence of period r = 21 is
shown below. As can be seen, CRT-based interleaving can also be regarded as a form of diagonal interleaving with
wrap around.

{U0(t)} {U1(t)} {U2(t)}
U0(0) U1(0) U2(0)

U0(1) U1(1) U2(1)

U0(2) U1(2) U2(2)

U0(3) U1(3) U2(3)

U0(4) U1(4) U2(4)

U0(5) U1(5) U2(5)

U0(6) U1(6) U2(6)

CRT-based
=⇒

interleaving

{J(t)}
J(0) J(7) J(14)

J(15) J(1) J(8)

J(9) J(16) J(2)

J(3) J(10) J(17)

J(18) J(4) J(11)

J(12) J(19) J(5)

J(6) J(13) J(20)

E. Achieving Desired Period 10230 in the GNSS Context

As noted in Section I-B, existing sequence designs in the literature are limited in terms of the length or periods
for which a low-correlation sequence family can be generated. Faced with the task of designing a signal set for
GPS of period 10230, and noting the limited sequence-length options available, Rushanan [18]–[20] came up with
a design of a family W of sequences termed as Weil sequences having odd-prime length p, and given by

W =

{
{si(t)}p−1

t=0 | 1 ≤ i ≤
p− 1

2

}
,

where si(t) = zt+izt, with (t+ i) computed modulo p and with zt, for t 6= 0 being the Legendre symbol:

z0 = −1, zt =
( t
p

)
, 1 ≤ t ≤ (p− 1).



The Weil sequence family for primes p = 3 (mod 4) was previously studied by Guohua and Quanin in [21]. The
idea in [18]–[20] was that it is easier to find primes that are closer in length to the desired period of 10230 than the
other possibilities for sequence length presented by prior sequence designs. The closest primes to 10230 are 10223
and 10243. As an illustration, the GPS Weil-sequence-based spreading-code design by Rushanan [20], begins from
a family of Weil sequences of length 10223 and adds 7 padding bits to obtain the desired length of 10230. The
BDS design [24], also based on Weil sequences, begins with a family of Weil sequences having period 10243 and
truncates 13 bits to arrive at the period 10230. However, both padding and truncation can cause a degradation in
correlation properties. Our approach described below, achieves the desired period 10230 without need for either
padding or truncation.

F. Our Approach

Our approach to constructing the desired sequence family JNAV involves three steps. We will focus in the beginning
on the first two steps as these steps are more general and yield the low-correlation sequence families J5,BAL, J7,BAL,
Q5,BAL and Q7,BAL. We begin with the generation of Family J5,BAL.

1) Family J5,BAL: Our approach is the two-step S-I-F approach mentioned in Section I-C. The two steps involved
in the generation of Family J5,BAL are illustrated in Fig. 2.

Z4-linear Family
K

=⇒
sequence selection,
CRT interleaving

Low-Even-Correlation
Family J5,LEC

=⇒
flipping of selected

constituent sequences

Balanced
Family J5,BAL

Figure 2: The two-step construction of the binary sequence Family J5,BAL. Each sequence in Family J5,LEC is obtained
by carrying out CRT-based interleaving of a carefully selected subset of 5 sequences from Family K with m = 2
(mod 4). Family J5,BAL is derived by selectively complementing or flipping the interleaved sequences so as to
achieve symbol balance within 2 without impacting the low, even-correlation properties.

1) The first step is to interleave 5 sequences from Family K of period 2(2m− 1) with m = 2 (mod 4), to obtain
a single sequence of period

5× 2(2m − 1) = 10(2m − 1).

The restriction to m = 2 (mod 4) is in part because of our interest in the specific case m = 10 corresponding
to period 10230 and in part, because it is only in this case that our approach can be used to improve upon the
naive (i.e., rectangular) interleaving approach explained in Section II-C. Such interleaving would in general,
result in a family having maximum correlation magnitude 5(2 + 2m/2+1). Our approach involves interleaving
based on the CRT coupled with careful selection of the set of 5 sequences that are being interleaved. It turns
out that this approach allows us to lower the value of Ωmax to 4(2m/2+1) + 2.
Remark 1. The quantity 2(5 + 4(2k)) with m = 2k = 10, evaluates to 266 and as can be seen from the
entries in Table III, it is this reduction from 5(26 + 2) = 330 to 4(26) + 2 = 266 that causes the value of
Ωmax to be lower than that of the other designs by 4.5 dB.
A key ingredient in the selection process is the availability of a closed-form expression for an exponential sum
over a Galois ring. This also allows us to provide closed-form expressions for both auto and cross-correlation
in the new family J5,BAL. However, at the end of this step, the sequences will in general have significant symbol
imbalance.

2) The second step is to selectively complement or flip the 5 constituent sequences being interleaved by making
use of the flipping operation defined in Definition 1. It turns out that this flipping can be done in such a way
that the symbol balance is reduced to 2 while preserving the maximum correlation value Ωmax.

The conceptual generation of sequence Family J5,BAL appears in Fig. 3.
2) Family J7,BAL: An analogous two-step approach can be used to construct Family J7,BAL with the difference

that here we require m = 2, 4, (mod 6) and we interleave 7 sequences from Family K.
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Figure 3: Illustrating the generation of sequences within the Family J5,BAL. The five binary Z4-linear sequences
from Family K that are being interleaved appear at the output of the five MSB maps. The rotary switch represents a
conceptually-simple means of carrying out CRT-based interleaving of the 5 sequences. The five-stage binary cycling
shift-register shown in the lower-right, implements flipping of the constituent sequences. All shift registers and the
rotary switch are synchronously advanced. The output sequence {J(t)} is a sequence belonging to Family J5,BAL.

Quaternary (Z4)
Sequence Family

A
=⇒

sequence selection,
CRT interleaving

Low-Even-Correlation
Family
Q5,LEC

=⇒
flipping of selected

constituent sequences

Balanced
Family
Q5,BAL

Figure 4: The two-step construction of the quaternary sequence Family Q5,BAL. Each sequence in Family J5,LEC is
obtained by carrying out CRT-based interleaving of a carefully selected subset of 5 sequences from Family A with
m = 2 (mod 4). Family J5,BAL is derived by selectively complementing the interleaved sequences so as to achieve
the same symbol balance as Family A without impacting the low even-correlation values.

3) Family Q5,BAL: The select-interleave-flip approach can also be used to construct the low-correlation the
quaternary sequence Family Q5,BAL(see Fig. 4). The principal difference is that here we interleave 5 sequences from
quaternary sequence Family A in place of Z4-linear sequence family K. Sequence selection prior to interleaving
and flipping to improve symbol balance are carried out as before.

4) Family Q7,BAL: An analogous two-step approach can be used to construct quaternary sequence Family Q7,BAL

with the difference that here we require m = 2, 4, (mod 6) and we interleave 7 sequences from Family A.

Remark 2. The construction of all four sequence families J5,BAL, J7,BAL, Q5,BAL, Q7,BAL share the following two features
in common: the select-interleave-flip approach with balance and correlation properties that are established using
the closed-form expression for an exponential sum over a Galois ring given in Theorem 2 of the appendix.

G. The Additional Step Used to Construct Family JNAV

To generate the family JNAV having specific period 10230, corresponding to value m = 10 and having the
properties listed in Table III, an additional step is needed. This step is used to improve upon odd-correlation
values as well as ensure the orthogonal-pairs property without impacting either the upper bound on Ωmax or the
symbol balance. The operations that are used in this step include refined sequence selection and flipping along with
cyclically shifting constituent sequences. This is illustrated in Fig. 5.



Balanced
Family
J5,BAL

=⇒
cyclic shifting, refined flipping

and sequence selection

IZ4 Sequence Family
JNAV

Figure 5: The additional step used to derive Family JNAV having specific period 10230, from sequence Family
J5,BAL. This family is derived using a combination of cyclic shifts, refined sequence selection and flipping so as to
lower odd-correlation values and permit the creation of orthogonal pairs, while preserving the even-correlation and
symbol-balance properties of Family J5,BAL.

H. Family Size

Since the Z4-linear family K contains 2m sequences, and each sequence in each of the Families J5,LEC, J5,BALand
JNAV is obtained by interleaving a set of 5 Z4-linear sequences, one might imagine that each of these families
would have size b2m

5 c. However it turns out that the requirement of symbol balance to within 2 reduces this to
2b2m−1

6 c. For the case m = 10 this gives us a family size of 170. As noted in [31] (see column 3, lines 37-57),
the GNSS scenario differs from that of cellular Code-Division Multiple Access (CDMA). While cellular CDMA
calls for a large number of spreading sequences to cater to a large number of potential users, in contrast, in a
GNSS, the spreading codes need only support the number of envisaged satellites, pseudolites and satellite-based
augmentation systems. For this reason, while there are potentially 5111 distinct Weil sequences of period 10223
that can be used to generate spreading codes having period 10230 through padding, only a subset of size 420 were
reserved for operation by GPS in their Interface Control Document [32]. Similarly, while there are potentially 5121
distinct Weil sequences of period 10243 that can be used to generate spreading codes having period 10230 through
truncation, only a subset of size 126 were reserved for operation by BDS in their Interface Control Document [24].

III. THE FAMILY K OF Z4-LINEAR SEQUENCES

We briefly review properties of the Z4-Linear sequence family K and present them in a form that will be helpful
in our derivation of the properties of the sequence families J5,LEC, J5,BAL and JNAV. We adopt the notation contained
in the Appendix A on Galois rings. Specifically, f(x) will denote a primitive polynomial over F2 of degree m ≥ 1
and F (x) will denote the basic irreducible polynomial over Z4 given by F (x2) = (−1)mf(x) f(−x). The Galois
Ring (GR) R4m is given by R4m = Z4[x]/(F (x)) ∼= Z4[β], where β is a zero of F (x), i.e., satisfies F (β) = 0.
The map µ(·) is the modulo-2 reduction map that maps R4m to the finite field F2m , F (x) to f(x) and β to the
primitive element α of the finite field F2m . Thus

µ(F (x)) = f(x), µ(β) = α.

We restrict our attention throughout this paper to the case m even, m ≥ 2, and set m = 2k. Consider the binary
Z4-linear sequence {K(x, y, t)} defined by

K(x, y, t) := MSB
{

3t
[
x+ T ([1 + 2y]βt)

]}
, t ∈ [2n], (15)

where x ∈ Z4, y ∈ Tm ⊆ R4m , where Tm is the set of Teichmuller representatives

Tm = {0} ∪ {1, β, β2, · · · , βn−1}.
It can be verified that K(x, y, t) has period 2n = 2(2m − 1). There is a natural isomorphism between the subset
2Tm ⊆ R4m and the finite field F2m . By identifying elements of the subset 2Tm ⊆ R4m with elements in F2m , we
will regard y as an element of F2m . In all of our discussion, β will remain a fixed element of order n in R4m . Thus
each sequence K(x, y, t) is indexed by the pair (x, y) of parameters with x ∈ Z4 and y ∈ F2m .

A. Related Sequences

Let

Q(x, y, t) := x+ T ([1 + 2y]βt), x ∈ Z4, y ∈ Tm ⊆ R4m , t ∈ [n]. (16)

Then we can write

K(x, y, t) = MSB
{

3tQ(x, y, t)
}
, t ∈ [2n]. (17)



Thus the binary sequence {K(x, y, t)} is obtained by applying the MSB-Gray map (see (13)) to the quaternary
sequence {Q(x, y, t)}. Let u(x, y, t) and v(x, y, t) denote the LSB and MSB components in the binary expansion
of Q(x, y, t), i.e.,

Q(x, y, t) = u(x, y, t) + 2v(x, y, t), where u(x, y, t), v(x, y, t) ∈ {0, 1}, (18)

and let w(x, y, t) denote the sum component:

w(x, y, t) := u(x, y, t) + v(x, y, t) (mod 2). (19)

We then have the following alternate description of the sequence {K(x, y, t)}:

K(x, y, t) = MSB
(

3t[u(x, y, t) + 2v(x, y, t)]

)
=

{
v(x, y, t), t even, t ∈ [2n],

w(x, y, t), t odd, t ∈ [2n].
(20)

The Gray map Z4 →
(
Z2 × Z2

)
is given by

G(s) := (s1, s2),

where s0, s1 ∈ {0, 1} are the LSB and MSB components respectively, of the quaternary symbol s = s0 +2s1 ∈ Z4,
and where s2 = s0 + s1 (mod 2). From this, the reason for the MSB-Gray map terminology becomes clear since
the map

Q(x, y, t) = u(x, y, t) + 2v(x, y, t) → (v(x, y, t), w(x, y, t)), (21)

is precisely the Gray map. Thus we have that for t even, the pair,(
K(x, y, t), K(x, y, t+ n)

)
= (v(x, y, t), w(x, y, t)),

is the image under the Gray map of the quaternary symbol Q(x, y, t).

B. Z4-Linear Family K
In this section, we introduce a sequence family K, derived by collecting together sequences {K(x, y, t)} having

parameters (x, y) that belong to a parameter set P that will shortly be specified. Let H be an (m− 1)-dimensional
subspace (or hyperplane) of F2m over Z2 satisfying the property that 1 6∈ H . It follows that y ∈ H ⇒ (y+ 1) 6∈ H .
Let P denote the parameter set

P = {(x, y) | x ∈ {0, 1} ⊆ Z4, y ∈ H} .
Clearly P is of size 2m. We then define the Z4-linear family K as the collection of 2m sequences given by:

K = {{K(x, y, t)} | (x, y) ∈ P} .
This sequence family is referred to in [14] as the family of Generalized Udaya-Siddiqi sequences. We also introduce
the quaternary sequence family Q, indexed by the same parameter set and given by

Q =
{
{Q(x, y, t)}n−1

t=0 | (x, y) ∈ P
}
. (22)

C. Hamming and Lee Weights and Distances

The Hamming weight wH(u) of a binary vector u ∈ Zk2 for some integer k ≥ 1, is the number of non-zero
symbols in u. The Hamming distance dH(u1, u2) between a pair of vectors in Zk2 is the number of symbols in
which they differ. Clearly

dH(u1, u2) = wH(u1 + u2).

The Lee weight wLee(s) of a quaternary symbol s ∈ Z4, s = s0 + 2s1, s0, s1 ∈ {0, 1}, is defined by:

wLee(s) :=


0, s = 0,
1, s = 1, 3,
2, s = 2.



It can be verified that the following identity holds:

wLee(s) := 1−<(ıs), (23)

where <(u) denotes the real part of a complex number u. It can be verified that

wLee(s) = wH
(
G(s)

)
:= wH

(
s1

)
+ wH

(
s2

)
,

where s2 = s0 + s1 (mod 2). The Lee distance dLee(x, y) of x, y ∈ Z4 is defined to be the Lee weight of (x− y)
computed (mod 4). It can be verified that

dLee(x, y) := wLee(x− y) = dH
(
G(x),G(y)

)
. (24)

In other words, the Gray map from Z4 to (Z2 × Z2), is an isometry that preserves weights and distances with
the understanding that in the Z4 domain, the computed weights and distances are Lee weights and Lee distances
while in the (Z2×Z2) domain, the computed weights and distances correspond to Hamming weights and Hamming
distances.

D. Symbol Balance and Notation

As noted earlier, the symbol balance of a periodic binary sequence {J(t)} having period L, is the non-negative
value

|
L−1∑
t=0

(−1)J(t) | .

If this value is ≤ b for some integer b, we will then say that {J(t)} has (symbol) balance within b. For simplicity,
in the sequel, when the underlying parameter set (x, y) is either understood, or else remains fixed throughout a
series of expressions, we will drop mention of the parameter set, and adopt the abbreviations appearing in Table V.

Table V: Some convenient abbreviations

Symbol Abbreviation Symbol Abbreviation
K(x, y, t) K(t) K(xi, yi, t) Ki(t)
Q(x, y, t) Q(t) Q(xi, yi, t) Qi(t)
u(x, y, t) u(t) u(xi, yi, t) ui(t)
v(x, y, t) v(t) v(xi, yi, t) vi(t)
w(x, y, t) w(t) w(xi, yi, t) wi(t)

E. Balance Properties of Sequences in K
For {K(x, y, t)} ∈ K it can be verified that

2n−1∑
t=0

(−1)K(t) = 2n− 2

2n−1∑
t=0

wH
(
K(t)

)
(25)

= 2

n−1∑
t=0

<{ıx+T ([1+2y]βt)}, (26)

= (−2)<{ıx}+ 2<
{
ıx
∑
z∈Tm

ıT ([1+2y]z)

}
. (27)

From the closed-form expression

Γ
(
ω1 + 2ω2

)
= −(2ı)kı−T (ω2/ω1),



for the exponential sum

Γ
(
ω1 + 2ω2

)
=

∑
z∈Tm

ıT ([ω1+2ω2]z), ωi ∈ Tm, i = 1, 2, ω1 6= 0,

appearing in Theorem 2 of the appendix, we obtain the following closed-form expression for the balance of a
sequence {K(x, y, t)} ∈ K:

2n−1∑
t=0

(−1)K(t) = (−2)<{ıx} − 2<{(2ı)kıx−T (y)}, (28)

= (−2)<{ıx} − 2k+1<{ık+x−T (y)}. (29)

It follows that the Z4-linear sequence {K(x, y, t)} is balanced to within 2 symbols iff

k + x− T (y) = 1 (mod 2).

IV. CLOSED-FORM CORRELATION EXPRESSION FOR FAMILY K
We will continue to use the abbreviated notation Ki(t) in place of K(xi, yi, t) etc, introduced in Table V of the

prior section, Section III. In this section, we will use the closed-form expression for the Galois ring exponential
sum given in Theorem 2 of the appendix, to present a closed-form expression for the cross-correlation function
φ
(
xi, yi, xj , yj , ·

)
of two sequences {Ki(t)}, {Kj(t)}, not necessarily distinct, belonging to the binary sequence

Family K introduced in the Section III, and defined by

φ
(
xi, yi, xj , yj , τ

)
:=

∑
t∈[2n]

(−1)Ki(t+τ)−Kj(t), t, τ ∈ [2n], (xi, yi), (xj , yj) ∈ P, (30)

where the sum (t+ τ) is computed modulo 2n.
This binary correlation function will be related to a correlation involving quaternary sequences {Q(x, y, t)}

belonging to quaternary sequence familyQ introduced in (22). The closed-formed expression itself, will be presented
later in the section. We will abbreviate and write φij(τ) in place of φ

(
xi, yi, xj , yj , τ

)
.

A. From Binary Correlation to Hamming Distance

We begin by noting that the binary correlation can be expressed in terms of Hamming distance:

φij(τ) :=
∑
t∈[2n]

(−1)Ki(t+ τ)−Kj(t)

= 2n− 2dH

(
{Ki(t+ τ)}, {Kj(t)}

)
, (31)

where

dH

(
{Ki(t+ τ)}, {Kj(t)}

)
:=

2n−1∑
t=0

dH
(
Ki(t+ τ),Kj(t)

)
,

denotes the Hamming distance between the sequences {Ki(t+ τ)}, {Kj(t)}. Next, we note from (20) that we have
the following alternate description of the Z4-linear sequence {K(t)}:

K(t) ,

{
v(t), t even,
w(t), t odd.

Given a time-shift parameter τ , τ ∈ [2n], we analogously obtain

K(t+ τ) =

{
v(t+ τ), for (t+ τ) even,
w(t+ τ), for (t+ τ) odd.

As a result, we arrive at the expressions for the pair
(
Ki(t+ τ),Kj(t)

)
appearing in Table VI.



Table VI: Values of the pair {Ki(t+ τ)}, {Kj(t)}.

t even t odd

τ even
(
vi(t+ τ), vj(t)

) (
wi(t+ τ), wj(t)

)

τ odd
(
wi(t+ τ), vj(t)

) (
vi(t+ τ), wj(t)

)
.

B. Relating Hamming Distance to Quaternary Correlation

Next, we express the Hamming distance between {Ki(t+ τ)} and {Kj(t)} in terms of an exponential sum
representing the pairwise correlation function of the collection Q of quaternary sequences defined in (22). We
separately consider the cases τ even, τ odd.

1) Case of τ even: It follows from the relations observed above between Hamming and Lee weights and distances,
that when τ is even:

2n−1∑
t=0

dH

(
Ki(t+ τ),Kj(t)

)
=

∑
t even

0≤t≤2n−1

dH

(
vi(t+ τ), vj(t)

)
+

∑
t odd

0≤t≤2n−1

dH

(
wi(t+ τ), wj(t)

)
,

(a)
=

∑
0≤t≤n−1

dH

(
vi(t+ τ), vj(t)

)
+

∑
0≤t≤n−1

dH

(
wi(t+ τ), wj(t)

)
,

=
∑

0≤t≤n−1

dH

((
vi(t+ τ), wi(t+ τ)

)
,
(
vj(t), wj(t)

))
=

∑
0≤t≤n−1

dH

(
G
(
Qi(t+ τ)

)
, G
(
Qj(t)

))
,

(b)
=

∑
0≤t≤n−1

dLee

(
Qi(t+ τ), Qj(t)

)
,

=
∑

0≤t≤n−1

wLee

(
Qi(t+ τ)−Qj(t)

)
,

(c)
= n−<

(
ρ(xi, yi, xj , yj , τ)

)
, (32)

where ρ(xi, yi, xj , yj , τ) is the quaternary correlation given by

ρ(xi, yi, xj , yj , τ) :=

n−1∑
t=0

ıQi(t+τ)−Qj(t), τ ∈ [2n], τ even. (33)

In the above, equality (a) follows because the binary sequences {vi(t)}, {wi(t)} have period n, and (b) follows from
the isometry of the Gray map. The last equality (c), follows from the relationship between Lee weight and real part
of a quaternary exponential sum given in (23). We will abbreviate and write ρij(τ) in place of ρ(xi, yi, xj , yj , τ)
for all (xi, yi), (xj , yj) ∈ P and τ ∈ [2n]. Note that the RHS in (33) is only a function of τ (mod n).



2) Case of τ odd: It follows analogously, that when τ is odd:
2n−1∑
t=0

dH

(
Ki(t+ τ),Kj(t)

)
=

∑
t even

0≤t≤2n−1

dH

(
wi(t+ τ), vj(t)

)
+

∑
t odd

0≤t≤2n−1

dH

(
vi(t+ τ), wj(t)

)
,

=
∑

0≤t≤n−1

dH

(
wi(t+ τ), vj(t)

)
+

∑
0≤t≤n−1

dH

(
vi(t+ τ), wj(t)

)
,

=
∑

0≤t≤n−1

dH

((
wi(t+ τ), vi(t+ τ)

)
,
(
vj(t), wj(t)

))
=

∑
0≤t≤n−1

dH

(
G
(
3Qi(t+ τ)

)
, G
(
Qj(t)

))
,

(a)
=

∑
0≤t≤n−1

dLee

(
3Qi(t+ τ), Qj(t)

)
,

=
∑

0≤t≤n−1

wLee

(
3Qi(t+ τ)−Qj(t)

)
,

(b)
= n−<

(
ρ(∗)(xi, yi, xj , yj , τ)

)
, (34)

where, ρ(∗)(xi, yi, xj , yj , τ) is the quaternary-correlation function defined by

ρ(∗)(xi, yi, xj , yj , τ) :=

n−1∑
t=0

ı3Qi(t+τ)−Qj(t), τ ∈ [2n], τ odd. (35)

analogous to ρ(xi, yi, xj , yj , τ) with {Qi(t + τ)} replaced by {3Qi(t + τ)}. In the above, equality labelled (a)
follows because if

Qi(t+ τ) = ui(t+ τ) + 2vi(t+ τ),

then

3Qi(t+ τ) = ui(t+ τ) + 2

(
ui(t+ τ) + vi(t+ τ)

)
,

= ui(t+ τ) + 2wi(t+ τ),

and thus replacing Qi(t+ τ) by 3Qi(t+ τ), is equivalent to interchanging the MSB component, vi(t+ τ) and the
sum component, wi(t + τ) =

(
vi(t + τ) + ui(t + τ)

)
(mod 2). The equality labelled (b) follows once again,

from the relationship between Lee weight and real part of a quaternary exponential sum given in (23). We will
abbreviate and write ρ(∗)

ij (τ) in place of ρ(∗)(xi, yi, xj , yj , τ) for all (xi, yi), (xj , yj) ∈ P and τ ∈ [2n].
From equations (32) and (34) above and the relation between binary correlation and Hamming distance given in

(31), we obtain:

φij(τ) =

{
2n− 2 (n−<(ρij(τ))) , τ even,

2n− 2
(
n−<(ρ

(∗)
ij (τ))

)
, τ odd,

which simplifies to

φij(τ) =

{
2<(ρij(τ)), τ ∈ [2n], τ even,

2<(ρ
(∗)
ij (τ)), τ ∈ [2n], τ odd.

(36)

Thus in summary, we have in this subsection, expressed the correlation φij(τ) of two binary sequences {Ki(t)}, {Kj(t)}
belonging to K in terms of the quaternary correlation functions ρij(τ), ρ(∗)

ij (τ), involving the pair of quaternary
sequences {Qi(t)}, {Qj(t)} ∈ Q respectively, underlying the binary sequences {Ki(t)}, {Kj(t)}.



We next study the quaternary correlation values
(
ρij(τ), ρ

(∗)
ij (τ)

)
appearing above separately for even and odd

values of the time-shift parameter τ . We begin with the case of τ ∈ [2n], τ even, where we have

ρij(τ) =

n−1∑
t=0

ıQ(xi,yi,t+τ)−Q(xj ,yj ,t) = ı(xi−xj)
n−1∑
t=0

ıT
(
βt+τ [1+2yi]−βt[1+2yj ]

)
,

= ı(xi−xj)
n−1∑
t=0

ıT
(
βt
(
θ[1+2yi]−[1+2yj ]

))
= ı(xi−xj)

−1 +
∑
z∈Tm

ıT
(
z
(
θ[1+2yi]−[1+2yj ]

)) , (37)

and where we have set θ = βτ .

C. Case τ = 0

For the case τ = 0, we have θ = 1 giving rise to:

ρij(0) = ı(xi−xj)

−1 +
∑
z∈Tm

ı2T (z[yi−yj ])


=

{
−ı(xi−xj), yi 6= yj ,

nı(xi−xj), yi = yj .

Our interest is in the associated correlation parameter φij(τ), given by

φij(τ) =

{
2<(ρij(τ)), τ even

2<(ρ
(∗)
ij (τ)), τ odd.

It follows that for τ = 0, since xi, xj ∈ {0, 1}, we have

φij(0) =


0, xi 6= xj ,
−2, xi = xj , yi 6= yj ,
2n, xi = xj , yi = yj .

(38)

D. Case τ ∈ [2n], τ even, τ 6= 0

We note that τ 6= 0 =⇒ θ 6= 1. We have from (37) that

ρij(τ) =

n−1∑
t=0

ıQ(xi,yi,t+τ)−Q(xj ,yj ,t),

= ıxi−xj

−1 +
∑
z∈Tm

ı
T

(
z
(
θ[1+2yi]−[1+2yj ]

)) .

To handle this case, we wish to bring the coefficient θ[1 + 2yi]− [1 + 2yj ] into the general form

θ[1 + 2yi]− [1 + 2yj ] = ω1 + 2ω2, ω1, ω2 ∈ Tm.
This would then allow us to evaluate

ρij(τ) = ıxi−xj

−1 +
∑
z∈Tm

ıT
(
z[ω1+2ω2]

) ,

= ıxi−xj
{
−1− 2kık−T (ω2/ω1)

}
,

by making use once again, of the closed-form expression

Γ
(
ω1 + 2ω2

)
= −2kık−T (ω2/ω1),



for the exponential sum

Γ
(
ω1 + 2ω2

)
=

∑
z∈Tm

ıT (ω1+2ω2), ωi ∈ Tm, i = 1, 2, ω1 6= 0,

appearing in (83) of the appendix. Towards this, we write

θ[1 + 2yi]− [1 + 2yj ] = (θ − 1) + 2(yiθ + yj)

= (θ + 1 + 2
√
θ) + 2(1 +

√
θ + yiθ + yj).

We then make the change of variable

θ1 := (θ + 1 + 2
√
θ), and note that

θ1 = (θ + 1) (mod 2),√
θ1 = 1 +

√
θ (mod 2).

We have used the fact here that in a field Fm of characteristic 2 and size 2m, every element θ has a unique square
root
√
θ given by

√
θ = θ2m−1

. This leads to

[1 + 2yi]θ − [1 + 2yj ] = θ1 + 2

(√
θ1 + yiθ1 + (yi + yj)

)
so that we have

ω1 = θ1, ω2 = ψ,

where ψ is the unique element in Tm such that

ψ =
√
θ1 + yiθ1 + (yi + yj) (mod 2).

It follows that the ratio
ω2

ω1
=

√
θ−1

1 + yi + (yi + yj)θ
−1
1 (mod 2).

Making the further change of variable µ2 , θ−1
1 , we get

ω2

ω1
= µ+ yi + (yi + yj)µ

2.

Note that µ and τ are related by:

θ = βτ , θ1 = (θ + 1) (mod 2), µ2 = θ−1
1 (mod 2) ⇒ µ =

√
1

1 + ατ
(mod 2),

since ατ = βτ (mod 2). This is well defined since we are dealing with the case τ 6= 0. Thus the crosscorrelation
φij(τ) is given by

φij(τ) = 2<
{
ıxi−xj

[
−1− 2kık−T (e(yi,yj ,τ))

]}
,

where e(yi, yj , τ) is the unique element belonging to the Teichmueller set Tm such that

e(yi, yj , τ) := µ+ yi + (yi + yj)µ
2 (mod 2),

and where

µ :=

√
1

1 + ατ
(mod 2). (39)



1) Case τ ∈ [2n], τ Odd: The underlying quaternary correlation in the case of odd τ is given by

ρ
(∗)
ij (τ) :=

N−1∑
t=0

ı3Q(xi,yi,t+τ)−Q(xj ,yj ,t),

= ı3xi−xj

−1 +
∑
z∈Tm

ı
T

(
z
(

3θ[1+2yi]−[1+2yj ]
)) ,

= ı3xi−xj

−1 +
∑
z∈Tm

ı
T

(
z
(
θ[1+2(yi+1)]−[1+2yj ]

)) .

Thus the difference between the case of τ even and τ odd, apart from the difference in the multiplicative factor
ıxi−xj versus ı3xi−xj is that we need to replace yi by (1 + yi). Thus the crosscorrelation in the case τ odd is given
by

φij(τ) = 2<
{
ı3xi−xj

[
−1− 2kık−T (f(yi,yj ,τ))

]}
,

where f(yi, yj , τ) is the unique element belonging to the Teichmueller set Tm such that

f(yi, yj , τ) := µ+ (1 + yi) + ( (yi + 1) + yj)µ
2 (mod 2),

= (1 + µ+ µ2) + yi + (yi + yj)µ
2 (mod 2),

where once again, µ is related to the cyclic shift parameter τ by (39).

E. Summarizing Closed-Form Expressions for Family K Correlations

1) For τ = 0, we have

φij(0) =


0, xi 6= xj ,
−2, xi = xj , yi 6= yj ,
2n, xi = xj , yi = yj .

(40)

2) For τ ∈ [2n], τ even, τ 6= 0, we have

φij(τ) = 2<
{
ıxi−xj

[
−1− 2kık−T (e(yi,yj ,τ))

]}
,

= (−2)<
{
ıxi−xj

}
+ (−2k+1)<

{
ıxi−xj+k−T

(
e(yi,yj ,τ)

)}
, (41)

where e(yi, yj , τ) is the unique element belonging to the Teichmueller set Tm such that

e(yi, yj , τ) = µ+ yi + (yi + yj)µ
2 (mod 2), (42)

and where µ is given

µ =

√
1

1 + ατ
(mod 2). (43)

3) For τ ∈ [2n], τ odd, we have

φij(τ) = 2<
{
ı3xi−xj

[
−1− 2kık−T (f(yi,yj ,τ))

]}
,

= (−2)<
{
ı3xi−xj

}
+ (−2k+1)<

{
ı3xi−xj+k−T

(
f(yi,yj ,τ)

)}
, (44)

where f(yi, yj , τ) is the unique element belonging to the Teichmueller set Tm such that

f(yi, yj , τ) = (1 + µ+ µ2) + yi + (yi + yj)µ
2 (mod 2), (45)

and where µ is again given by (43).



F. Correlation spectrum of Family K
By correlation spectrum of Family K, we will mean the set of correlation values:

{φ(xi, yi, xj , yj , τ) | (xi, yi) ∈ P, (xj , yj) ∈ P, either i 6= j or τ 6= 0}
From equations (40), (41) and (44) above, we see that Family K has correlation spectrum that is a subset of the set

{±2, 0} + {0,±2k+1} = {0, ±2, ±2k+1, ±2± 2k+1}.
Let us define:

φa,max := max
0≤i≤1023

{ |φii(τ)| | 1 ≤ τ ≤ 2n− 1} ,
φc,max := max

0≤i,j≤1023
i 6=j

{ |φi,j , τ)| | 0 ≤ τ ≤ 2n− 1} ,

φmax = max{φa,max, φc,max}.
Thus we have that Family K has even-correlation parameters satisfying

φa,max ≤ (2 + 2k+1), φc,max ≤ (2 + 2k+1), φmax ≤ (2 + 2k+1).

V. THE LOW-EVEN-CORRELATION FAMILY J5,LEC

Each sequence in J5,LEC is obtained by interleaving a set of 5 distinct Z4-linear sequences drawn from the family
K having period 2(2m − 1) for m = 2 (mod 4). Each sequence in K is employed in the construction of at most
one sequence in J5,LEC. Thus the set of interleaved sequences corresponding to two distinct sequences in J5,LEC are
disjoint. The method of interleaving employed is based on the Chinese Remainder Theorem (CRT). As sequences
in Family K have period 2(2m − 1) and as the integers 2(2m − 1) and 5 are relatively prime for m = 2 (mod 4),
each sequence in J5,LEC will turn out to have period L = (5× 2(2m − 1)) = 10(2m − 1).

A. Family Size

There are in all, a total of 2m Z4-linear sequences

{ {K(x, y, t)} | x ∈ {0, 1}, y ∈ H} ,
of period 2n = 2(2m− 1) in the family K, which would suggest that one might be able to construct an IZ4 family
of size b2m

5 c IZ4 sequences. However, under the construction approach adopted here, the need for achieving symbol
balance to within 2, forces a reduction in family size from b2m

5 c to M = 2b2m−1

6 c. This is explained in greater
detail in Remark 6 of Section VIII. The construction of Family J5,LEC presented here will be such that all of the 5
sequences from K employed in the construction of a single sequence in Family J5,LEC will share the same value of
parameter x, either x = 0 or x = 1. Thus it is meaningful to categorize a sequence {J(t)} belonging to J5,LEC as
being a sequence associated to parameter value x = 0 or x = 1. The Family J5,LEC will be constructed in such a
manner that M/2 sequences in J5,LEC are associated to parameter x = 0 and an equal number, M/2, to parameter
x = 1. Some subspaces and matrices that feature in the construction are identified below.

B. Admissible Subspaces

Definition 4 (Admissible Pair Subspaces (H,W )). Let H be an (m − 1)-dimensional subspace over Z2 of F2m ,
having the property that 1 6∈ H . Thus y ∈ H ⇒ (y + 1) 6∈ H . As H has co-dimension 1, H will sometimes be
referred to as a hyperplane. Let W be a two-dimensional subspace of H over Z2 having the form

W := 〈γ0, γ1〉 = {0, γ0, γ1, γ0 + γ1},
where the elements γ0, γ1 belong to H and satisfy the trace conditions

tr(γ0) = 1, tr(γ1) = 0. (46)

Any pair of subspaces (H,W ) satisfying the above conditions will be termed as an admissible pair of subspaces.
The subspaces H,W will also be individually referred to as admissible subspaces.



C. Admissible Parameter Matrix Y

Let (H,W ) be an admissible pair of subspaces of the field F2m . Thus W is of the form W = 〈γ0, γ1〉, with
tr(γ0) = 1 and tr(γ) = 0. Under modulo-2 addition, W is a subgroup of H and H can be partitioned into the
disjoint union of 2m−1/4 = 2m−3 cosets of W . Let {ga}2

m−3−1
a=0 and {ha}2

m−3−1
a=0 be two sets of coset representatives

for the cosets of W in H . The two sets could be disjoint, identical, or overlap partially.
An (M × 5) parameter-matrix Y (H,W ) will now be constructed, that is a function of the pair (H,W ), and

whose entries will be specified in two steps. For brevity, Y (H,W ) will simply be denoted by Y . For a ∈ [M ], and
j ∈ [5], the symbol y(a)

j will denote the element in the ath row and jth column of Y . We define for a ∈ [M/2],(
y

(a)
1 , y

(a)
2 , y

(a)
3 , y

(a)
4

)
:=

(
ga, ga + γ0, ga + γ0 + γ1, ga + γ1

)
, (47)(

y
(a+M/2)
1 , y

(a+M/2)
2 , y

(a+M/2)
3 , y

(a+M/2)
4

)
:=

(
ha, ha + γ0, ha + γ0 + γ1, ha + γ1

)
. (48)

Note that the right hand sides represent a specific ordering of elements in the cosets ga +W , ha +W respectively.
Note also that for all a ∈ [M ] we can write:(

y
(a)
1 , y

(a)
2 , y

(a)
3 , y

(a)
4

)
=

(
y

(a)
1 , y

(a)
1 + γ0, y

(a)
1 + γ0 + γ1, y

(a)
1 + γ1

)
:= y

(a)
1 +W. (49)

It remains to define the entries of the matrix Y corresponding to the first column, i.e., the entries {y(a)
0 | a ∈ [M ]}.

It follows from (46), (49) and linearity of the trace function that each coset

y
(a)
1 +W =

(
y

(a)
1 , y

(a)
1 + γ0, y

(a)
1 + γ0 + γ1, y

(a)
1 + γ1

)
, a ∈ [M ],

contains two elements having trace-value zero and two elements having trace-value one. Recall that the 2m−3 cosets
of W partition H . We define the coset-union sets

Ag =

(2m−3−1)⋃
a=M/2

(ga +W ),

Ah =

(2m−3−1)⋃
a=M/2

(ha +W ).

Clearly the sets Ag and Ah are each of size
(
4× (2m−3−M/2)

)
= (2m−1− 2M) and hence contain (2m−2−M)

elements having trace value zero and the same number of elements having trace value one.
Let T0 be a set of size M/2 obtained by selecting an arbitrary subset of M/2 (out of a total possible of

(2m−2 −M)) elements in the set Ag having trace value = (k + 1) (mod 2). This is possible as

2m−2 −M = 2m−2 − 2b2
m−1

6
c ≥ M/2 = b2

m−1

6
c.

Thus T0 satisfies the conditions,

T0 ⊆ {θ ∈ Ag | tr(θ) = (k + 1) (mod 2)},
|T0| = M/2, (50)

(see Fig. 6). Next, we order the M/2 elements in the set T0 and use the symbol y(a)
0 to denote the ath element,

a ∈ [M/2] of T0.
Correspondingly, let T1 be a set of size M/2 obtained by selecting an arbitrary subset of M/2 (out of a total

possible of (2m−2 −M) elements in the set Ah having trace value = k (mod 2), i.e.,

T1 ⊆ {θ ∈ Ah | tr(θ) = k (mod 2)}
|T1| = M/2. (51)

We order the M/2 elements in the set T1 and use the symbol y(a+M/2)
0 to denote the ath element, a ∈ [M/2] of

T1. With this, we have defined all the entries {y(a)
0 | a ∈ [M ]}, corresponding to the first column of the parameter

matrix Y . Further, these entries satisfy

tr(y(a)
0 ) =

{
(k + 1) (mod 2), a ∈ [M/2],

k (mod 2), M/2 ≤ a ≤ (M − 1).
(52)



g0 +W
{u | tr(u) = (k + 1) (mod 2)} ⊇ T0g1 +W

...

...
{u | tr(u) = k (mod 2)}gM/2−2 +W

gM/2−1 +W

h0 +W
{u | tr(u) = (k + 1) (mod 2)}h1 +W

...
h0 +W

{u | tr(u) = k (mod 2)} ⊇ T1hM/2−2 +W
hM/2−1 +W

Figure 6: Illustrating the sets {{ga +W}, {ha +W}, T0, T1} that appear in the construction of Family J5,LEC. The
table (a) on the left shows the partitioning of the hyperplane H for the case 0 ≤ a ≤ (M/2−1), into three segments
(i) M/2 cosets of W of the form ga + W , (ii) the set of (2m−2 −M) elements in the set Ag having trace-value
= (k + 1) (mod 2), and (iii) the set of (2m−2 −M) elements in set Ag having trace-value = k (mod 2). The set
T0 is a subset of the set having size M/2 and trace value (k + 1) (mod 2). The table (b) on the right shows the
analogous partitioning of the hyperplane H for the case M/2 ≤ a ≤ (M − 1). The set T1 is in this case, a subset
of the trace = k (mod 2) elements of size M/2 of the set Ah.

This completes our specification of the parameter matrix Y . We will refer to any matrix Y constructed by following
precisely these steps as an admissible parameter matrix. We will refer to the triple

(
H,W, Y

)
as an admissible

triple.

D. The Sum Matrix

Let
(
H,W, Y

)
be an admissible triple as defined in Subsection V-C above. A matrix that will be helpful in

establishing the even-correlation properties of Family J5,LEC will now be identified. Let a ∈ [M ], b ∈ [M ] be fixed
and let S be the (4× 4) matrix whose (j, k)th entry is the sum given by

S(j, k) := y
(b)
j + y

(a)
k , j, k ∈ {1, 2, 3, 4}.

The entries of S are displayed in Table VII.

Table VII: The sum-matrix S whose (j, k)th entry is given by y(b)
j + y

(a)
k . The element ∆ appearing in the table,

denotes the sum ∆ := y
(a)
1 + y

(b)
1 .

Trace values of {y(a)i | i = 1, 2, 3, 4} tr(y(a)1 ) tr(y(a)1 ) + 1 tr(y(a)1 ) + 1 tr(y(a)1 )

y
(b)
i / y

(a)
i y

(a)
1 y

(a)
2 = y

(a)
1 + γ0 y

(a)
3 = y

(a)
1 + γ0 + γ1 y

(a)
4 = y

(a)
1 + γ1

y
(b)
1 ∆ ∆ + γ0 ∆ + γ0 + γ1 ∆ + γ1

y
(b)
2 = y

(b)
1 + γ0 ∆ + γ0 ∆ ∆ + γ1 ∆ + γ0 + γ1

y
(b)
3 = y

(b)
1 + γ0 + γ1 ∆ + γ0 + γ1 ∆ + γ1 ∆ ∆ + γ0

y
(b)
4 = y

(b)
1 + γ1 ∆ + γ1 ∆ + γ0 + γ1 ∆ + γ0 ∆



Property 1 (Sum-Constant-Trace-Different Property). Let ⊕ denote addition modulo 5. For any ν ∈ [5], the multiset{
y

(a)
i⊕ν + y

(b)
i | i ∈ {1, 2, 3, 4}, i⊕ ν ∈ {1, 2, 3, 4}

}
,

contains at least two identical sums

y
(a)
i1⊕ν + y

(b)
i1

= y
(a)
i2⊕ν + y

(b)
i2
,

with i1 ∈ {1, 2, 3, 4}, i2 ∈ {1, 2, 3, 4}, i1 6= i2, such that

tr(y(a)
i1⊕ν) 6= tr(y(a)

i2⊕ν).

Proof. This property can be verified simply by examining the entries of Table VII and verifying that for each value
of ν, ν = 0, 1, 2, 3, 4, the property holds. The boxed entries show that the property holds for the case ν = 2.

We will refer to Property 1 as the sum-constant-trace-different property of the admissible subspace pair (H,W ).

E. Construction of the Low Even-Correlation Family J5,LEC

A formal description of the construction of Family J5,LEC is provided below.

Construction 1 (Family J5,LEC). Let β be an element of R4m having order n = 2m−1. Let (H,W ) be an admissible
pair of subspaces as described in Section V-B and let Y (H,W ) be an admissible parameter matrix as defined
in Section V-C. Let y(a)

j denote the entry in the ath row, a ∈ [M ], and jth column, j ∈ [5], of Y (H,W ) where
M = 2b2m−1

6 c. For x ∈ {0, 1} ⊆ Z4, y ∈ H , we define the sequence

K(x, y, t) := MSB
{

3t
[
x+ T ([1 + 2y]βt)

]}
, t ∈ [2n].

Then the low-even-correlation family J5,LEC, is a family of M binary sequences, each having period L = 10(2m−1).
The a-th sequence {J (a)(t)}, a ∈ [M ], in the family is obtained by CRT-based interleaving of the 5 Z4-linear
sequences {K(x(a), y

(a)
j , `)}4j=0, where

x(a) =

{
0, a ∈ [M/2],

1, M/2 ≤ a ≤ (M − 1).
(53)

Thus the a-th sequence {J (a)(t)}, a ∈ [M ], in Family J5,LEC, is given by

J (a)(t) = K(x(a), y
(a)
j , `), t ∈ [L], (54)

where j = t (mod 5) and ` = t (mod 2n).

Remark 3. We summarize for future reference, information concerning the parameters
(
x(a), (y

(a)
j , j ∈ [5])

)
of

sequences in Family J5,LEC.
(a) From equations (52) and (53) we see that for all sequences in the family, we have

x(a) =

{
0, a ∈ [M/2],

1, M/2 ≤ a ≤ (M − 1),
(55)

and

tr(y
(a)
0 ) = x(a) + k + 1, for all a ∈ [M ]. (56)

(b) From (49), we see that the parameters
(
y

(a)
j , j ∈ [5]

)
satisfy:(

y
(a)
j , j ∈ [5]

)
=

(
y

(a)
0 , y

(a)
1 , y

(a)
1 + γ0, y

(a)
1 + γ0 + γ1, y

(a)
1 + γ1.

)
, ∀ a ∈ [M ]. (57)



VI. CLOSED-FORM EXPRESSION FOR THE CORRELATION OF SEQUENCES IN FAMILY J5,LEC

A closed-form expression for the even correlation of a pair of sequences drawn from the Family J5,LEC will be
provided in this section. The a-th sequence {J (a)(t)} in J5,LEC is obtained as noted in the prior section, by interleaving
5 Z4-linear sequences. Let the 5 sequences in K that are interleaved be denoted by

{
{K
(
x(a), y

(a)
j , t

)
}, j ∈ [5]

}
,

with
(
x

(a)
j , y

(a)
j

)
∈ P , all j ∈ [5]. Recall that

K
(
x(a), y

(a)
j , t

)
= MSB

(
3tQ

(
x(a), y

(a)
j , t

))
,

where

Q
(
x(a), y

(a)
j , t

)
= x(a) + T

(
[1 + 2y

(a)
j ]βt

)
,

where β is an element of R4m having order n = 2m − 1. The following abbreviation will be adopted:

K
(a)
j (`) := K

(
x(a), y

(a)
j , `

)
, ∀a ∈ [M ], ` ∈ [2n], j ∈ [5]. (58)

Consider the correlation

Ω(a, b, τ) :=

L−1∑
t=0

(−1)J
(a)(t+ τ)−J (b)(t),

where L := 10(2m − 1), of a pair {J (a)(t)}, {J (b)(t)} of sequences in J5,LEC, not necessarily distinct. Let λ, ν be
defined by

λ = τ (mod 2n), ν = τ (mod 5).

By the Chinese Remainder Theorem, the correlation of the sequences {J (a)(t)}, {J (b)(t)} can be expressed in
terms of correlations involving the component Z4-linear sequences{

{K(a)
j (t)}, {K(b)

j (t)} | j ∈ [5]
}

as shown below:

Ω(a, b, τ) =

N−1∑
t=0

(−1)J
(a)(t+ τ)−J (b)(t)

=

4∑
j=0

2n−1∑
`=0

(−1)K
(a)
j⊕ν(`+λ)−K(b)

j (`)

=

4∑
j=0

φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
. (59)

Remark 4 (Advantage of CRT-based interleaving). As can be seen from (59) above, the correlation Ω(a, b, τ)
of a pair of sequences in Family J5,LEC and corresponding to cyclic shift τ , is the sum of the correlations
φ
(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
of 5 pairs{(

{K(a)
j⊕ν(`)}, {K(b)

j (`)}
)
| j ∈ [5]

}
,

of sequences drawn from Family K, where in each case, the cyclic shift between sequences within each pair is the
same and given by

λ = τ (mod 2n).

The fact that the cyclic shift λ is the same independent of the index j, is a consequence of CRT-based interleaving.
This significantly simplifies the problem of selecting the sequences to be interleaved so as to result in lower value
of maximum correlation parameter Ωmax.

The further discussion is broken up into four cases as shown in Fig. 7.



Ω(a, b, τ)

λ = 0

Case (A):
{

a = b
and ν = 0

Case (B):
{

a 6= b
or ν 6= 0

λ 6= 0

Case (C): λ even Case (D): λ odd

Figure 7: Breaking up the correlation function of a pair of sequences from Family J5,LEC into four different cases.
A closed-form expression for the correlation is provided in each case.

A. Case a = b and λ = ν = 0

We have that

λ = 0, ν = 0 =⇒ τ = 0.

If in addition, a = b we clearly have

Ω(a, b, τ) = L. (60)

B. Case λ = 0, and either ν 6= 0 or a 6= b

Recall from (38) that for λ = 0, the cross-correlation of a pair of distinct Z4-linear sequences {K(xi, yi, t)},
{K(xj , yj , t)}, is given by

φij(0) =


0, xi 6= xj ,
−2, xi = xj , yi 6= yj ,
2n, xi = xj , yi = yj .

It follows as a result, that for λ = 0, and either ν 6= 0 or a 6= b, we have that

Ω(a, b, τ) =

4∑
j=0

φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , 0

)
,

=

{
0, x(a) 6= x(b),

−10, x(a) = x(b), but either a 6= b or ν 6= 0.
(61)

C. Case λ even, λ 6= 0

We focus next on the case λ even, λ 6= 0. A similar analysis will hold for the case λ odd. We begin with correlation
expressions for the general case. From equations (36), (33) and (35), with τ replaced by λ and (xi, yi, xj , yj) replaced
by
(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j

)
we have that

φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
=


2<
(
ρ
(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

))
, λ even,

2<
(
ρ∗
(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

))
, λ odd,

where

ρ
(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
=

n−1∑
`=0

ıQ(x(a),y
(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`),



and

ρ(∗)(x(a), y
(a)
j⊕ν , x

(b), y
(b)
j , λ

)
=

n−1∑
`=0

ı3Q(x(a),y
(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`).

As a result, we can write,

Ω(a, b, τ) =

4∑
j=0

φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
,

=


∑4

j=0 2<
{∑n−1

`=0 ı
Q(x(a),y

(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`)

}
, λ even ,∑4

j=0 2<
{∑n−1

`=0 ı
3Q(x(a),y

(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`)

}
, λ odd .

By making use of the closed-from expression for correlation of sequences in Family K appearing in equation (41),
we obtain that for the case λ even, λ 6= 0,

Ω(a, b, τ) =

4∑
j=0

2<
{
n−1∑
`=0

ıQ(x(a),y
(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`)

}
,

=

4∑
j=0

2<
{
ı(x

(a)−x(b))

[
−1− (2ı)kı−T

(
e(y

(a)
j⊕ν ,y

(b)
j ,λ)

)]}
,

= (−2)

4∑
j=0

<
{
ı(x

(a)−x(b))
}
− 2(2ı)k

4∑
j=0

<
{
ıx

(a)−x(b)−T
(
e(y

(a)
j⊕ν ,y

(b)
j ,λ)

)}
, (62)

where from (42), e(y(a)
j⊕ν , y

(b)
j , λ) is the unique element in Tm, satisfying

e(y
(a)
j⊕ν , y

(b)
j , λ) := µ+ y

(a)
j⊕ν + µ2(y

(a)
j⊕ν + y

(b)
j ) (mod 2), (63)

with µ given from (43) by

µ :=

√
1

1 + αλ
(mod 2). (64)

D. Case λ odd

A similar argument holds for the case λ odd. The only changes are that we replace e(y(a)
j⊕ν , y

(b)
j , λ) by f(y

(a)
j⊕ν , y

(b)
j , λ)

and
(
x(a) − x(b)

)
by
(
3x(a) − x(b)

)
for λ odd. Thus for λ odd, we have:

Ω(a, b, τ) =

4∑
j=0

2<
{
n−1∑
`=0

ı3Q(x(a),y
(a)
j⊕ν ,`+λ) − Q(x(b),y

(b)
j ,`)

}
,

=

4∑
j=0

2<
{
ı(3x

(a)−x(b))

[
−1− (2ı)kı−T

(
(f(y

(a)
j⊕ν ,y

(b)
j ,λ)

)]}
,

= (−2)

4∑
j=0

<
{
ı(3x

(a)−x(b))
}
− 2(2ı)k

4∑
j=0

<
{
ı3x

(a)−x(b)−T
(

(f(y
(a)
j⊕ν ,y

(b)
j ,λ)

)}
, (65)

where f(y
(a)
j⊕ν , y

(b)
j , λ) is the unique element in Tm, satisfying

f(y
(a)
j⊕ν , y

(b)
j , λ) := (1 + µ+ µ2) + y

(a)
j⊕ν + µ2(y

(a)
j⊕ν + y

(b)
j ) (mod 2), (66)

with µ given from (43) by

µ :=

√
1

1 + αλ
(mod 2).



E. Correlation Summary

For a given cyclic-shift parameter τ ∈ [L], let λ = τ (mod 2n) and ν = λ (mod 5) as above. In summary, we
then have the following:
(a) for the case when τ is such that λ = 0, we have

Ω(a, b, τ) =


L, τ = 0 and a = b,

0, λ = 0 and x(a) 6= x(b),

−10, λ = 0, x(a) = x(b), but either a 6= b or ν 6= 0.

(67)

(b) for the case when τ is such that λ is even, but λ 6= 0, we have that Ω(a, b, τ) is given by (62),
(c) for the case when τ is such that λ is odd, we have that Ω(a, b, τ) is given by (65).

F. Criterion for Reducing Ωmax from
(
10(2k) + 10

)
to
(
8(2k) + 10

)
It follows from an examination of (62), (65) and (67), that apart from the trivial case when (a = b, τ = 0), we

have

| Ω(a, b, τ) | ≤ 5(2(2k + 1)) = 10(2k) + 10.

1) Case λ even, λ 6= 0: An examination of the 5-term summation
4∑
j=0

<
{
ıx

(a)−x(b)+1−T
(
e(y

(a)
j⊕ν ,y

(b)
j ,λ)

)}
(68)

appearing in (62) above for the case λ even, will reveal that the maximum correlation magnitude can be reduced
for the case of λ even, λ 6= 0, from

5(2(2k + 1)) = 10(2k) + 10 to 4(2(2k + 1)) + 2 = 8(2k) + 10,

if we can ensure that the possibility of

x(a) − x(b) + 1− T
(
e(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 0 (mod 2), all j, j ∈ [5],

or equivalently,

T
(
e(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 1 + x(a) + x(b) (mod 2), all j, j ∈ [5], (69)

is ruled out for any value of τ such that λ is even, λ 6= 0, and ν is arbitrary in the range 0 ≤ ν ≤ 4, by careful
selection of the elements

(
x(a), {y(a)

j }4j=0

)
for a ∈ [M ]. This is because if the possibility expressed in (69) is ruled

out, then at least one of the summands in (68) will equal 0.
2) Case λ odd: The analogous statement in the case of λ odd is that the maximum correlation magnitude can

be reduced from
(
10(2k) + 10

)
to
(
8(2k) + 10

)
if we can ensure that the possibility of

3x(a) − x(b) + 1− T
(
f(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 0 (mod 2),

or equivalently,

T
(
f(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 1 + x(a) + x(b) (mod 2), all j, j ∈ [5], (70)

is ruled out for any value of τ such that λ is odd and ν is arbitrary in the range 0 ≤ ν ≤ 4, by careful selection
of the elements

(
x(a), {y(a)

j }4j=0

)
for a ∈ [M ].



VII. IMPROVED UPPER BOUND ON Ωmax FOR FAMILY J5,LEC

We will now show that the low-even-correlation sequence family J5,LEC constructed in Construction 1, has
maximum nontrivial correlation magnitude Ωmax upper bounded by (8(2k) + 10). We first examine the criterion
provided in (69) and (70) more closely. As before, for a given cyclic-shift parameter τ ∈ [L], we set λ = τ
(mod 2n) and ν = λ (mod 5).

1) For the case λ even, λ 6= 0, we need to avoid that

T
(
e(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 1 + x(a) + x(b) (mod 2), all j, j ∈ [5],

i.e., we need to avoid

tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) = tr(µ) + 1 + x(a) + x(b), (mod 2), all j, j ∈ [5].

It follows that it suffices to ensure that for any given value of a, b ∈ [M ] and ν, 0 ≤ ν ≤ 4, the sum of the
traces

tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) (mod 2),

is not the same for all j ∈ [5].
2) For the case λ odd, we need to avoid that

T
(
f(y

(a)
j⊕ν , y

(b)
j , λ)

)
= 1 + x(a) + x(b) (mod 2), all j, j ∈ [5],

i.e., we need to avoid

tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) = tr(1 + µ+ µ2) + 1 + x(a) + x(b), (mod 2), all j, j ∈ [5].

But here again, we see that it suffices to ensure that for any given value of a, b ∈ [M ] and ν, 0 ≤ ν ≤ 4, the
sum of the traces

tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) (mod 2),

is not the same for all j ∈ [5].
Thus we see that we end up with the same “sum-of-traces” criterion regardless of whether λ is even with λ 6= 0,
or else, λ odd. We summarize this observation in the form of a Lemma.

Lemma 1 (Sum-of-traces condition). Let J5,LEC be the low-even-correlation family of sequences constructed using
Construction 1. For given value of cyclic shift τ ∈ [L], let λ = τ (mod 2n) and ν = λ (mod 5). Then the
parameters Ωa,max, Ωc,max of the family J5,LEC will satisfy

max{Ωa,max, Ωc,max} ≤ (8(2k) + 10),

if the parameters {
(
x(a), {y(a)

j }4j=0

)
| a ∈ [M ]} can be verified to satisfy the sum-of-traces criterion below namely,

that for any fixed value of a, b ∈ [M ], λ 6= 0, and ν, 0 ≤ ν ≤ 4, the sum of traces

σ(j) := tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) (mod 2), (71)

where µ = (1 + αλ)−
1

2 , does not take on the same value for at least one value of j, j ∈ [5].

Theorem 1. Let J5,LEC be the low-even-correlation family of sequences constructed using Construction 1. Then the
parameters Ωa,max, Ωc,max of the family J5,LEC satisfy the upper bound

max{Ωa,max, Ωc,max} ≤ (8(2k) + 10),

Proof. We will prove the theorem by verifying that the parameters

{
(
x(a), {y(a)

j }4j=0

)
| a ∈ [M ]},

of J5,LEC satisfy for any a, b ∈ [M ], λ 6= 0, and any ν, 0 ≤ ν ≤ 4, the sum-of-traces criterion appearing in Lemma 1.
The sum-of-traces criterion requires that for any fixed value of λ, λ 6= 0, and ν, 0 ≤ ν ≤ 4, the sum of traces

σ(j) := tr(y(a)
j⊕ν) + tr(µ2(y

(a)
j⊕ν + y

(b)
j )) (mod 2),



where µ = (1 + αλ)−
1

2 , is not the same for at least one value of j, j ∈ [5]. However, this property is ensured by
the sum-constant, trace-different property which states that for any value of ν, 0 ≤ ν ≤ 4 there are at least two
distinct values j1, j2 of index j ∈ {1, 2, 3, 4} such that

j1 ⊕ ν ∈ {1, 2, 3, 4}, j2 ⊕ ν ∈ {1, 2, 3, 4}
y

(a)
j1⊕ν + y

(b)
j1

= y
(a)
j2⊕ν + y

(b)
j2
,

but

tr(y(a)
j1⊕ν) 6= tr(y(a)

j2⊕ν),

so we are done.

Remark 5 (Freedom in selecting the j = 0 sequence). The sum-of-traces criterion requires that for any value of
ν, 0 ≤ ν ≤ 4, the 5 trace-sums {σ(j)}4j=0 are not all the same. But the proof of Theorem 1 above shows that this
statement is true even if we restrict attention to the subset

{σ(j) | j ∈ {1, 2, 3, 4}, j ⊕ ν ∈ {1, 2, 3, 4}} .
This tells us that in order to lower maximum correlation parameters Ωa,max,Ωc,max, in constructing the a-th
sequence, {J (a)(t)} in J5,LEC, for a ∈ [M ], it is only necessary to carefully select the four sequences {K(a)

j (t)} for

j = 1, 2, 3, 4. The sequence {K(a)
0 (t)} can be freely chosen. This freedom in selecting the sequence {K(a)

0 (t)} will
be employed in Section IX to improve odd-correlation properties while maintaining even-correlation properties and
balance for the case m = 10 and period L = 10230.

VIII. CONSTRUCTING THE BALANCED FAMILY J5,BAL

We examine in Section VIII-A, the symbol balance of sequences {J (a)(t)}, a ∈ [M ], constituting the low-
even-correlation family J5,LEC constructed in Construction 1. We will show that the sequences in J5,LEC, do not
satisfy the property of having symbol balance to within 2; they are only guaranteed to have symbol balance to
within ((4 × 2k) + 10) and may therefore be said to only be weakly balanced. For this reason, we present in
Subsection VIII-B below, a modification of Construction 1, that results in a modified sequence family J5,BAL. We
will show that sequences within family J5,BAL have symbol balance to within 2, while continuing to have maximum
nontrivial correlation magnitude Ωmax upper bounded by 2(5 + 4(2k)).

A. Weak Balance of Family J5,LEC

Recall from (28), that in the case of a sequence {K(x, y, t)} lying within the family K, we have that
2n−1∑
t=0

(−1)K(x,y,t) = (−2)<{ıx} − 2k+1<{ıx+k−T (y)}.

Each sequence {J (a)(t)} within Family J5,LEC, is obtained by interleaving the 5 Z4-linear sequences{
{K(x(a), y

(a)
j , t)} | j ∈ [5]

}
. As a result, we have that

10n−1∑
t=0

(−1)J
(a)(t) =

4∑
j=0

2n−1∑
t=0

(−1)K(x(a), y
(a)
j , t),

= (−10)<{ıx(a)} − 2k+1
4∑
j=0

<{ıx(a)+k−T (y
(a)
j )}. (72)

Let us define the elements

u
(a)
j := x(a) + k − T (y

(a)
j ), (mod 2), j ∈ [5],

= x(a) + k + tr(y(a)
j ), (mod 2), j ∈ [5],



belonging to F2. As the set of elements {y(a)
j }4j=1 represent a coset of W in H , of the 4 values of u(a)

j , j = 1, 2, 3, 4,
two have value 0 and 2 have value 1. The two 1 values contribute 0 to the balance since <(ı) = 0. The two 0
values each contribute {±2k+1} to the balance. It follows that to ensure balance to within 2, it is necessary that
the remaining 5th term corresponding to j = 0 contribute nothing, i.e., it is necessary to ensure that

x(a) + k + tr(y(a)
0 ) = 1 (mod 2),

i.e., ensure that

tr(y(a)
0 ) = (x(a) + k + 1) (mod 2), ∀a ∈ [M ]. (73)

We will refer to this as the trace condition for symbol balance. From equation (56) in Remark 3 following
Construction 1, we see that sequences in family J5,LEC satisfy this condition. Thus we can drop the term associated
to index j = 0 in the sum on the right of equation (72), leading to the following expression for sequence balance

10n−1∑
t=0

(−1)J
(a)(t) = (−10)<{ıx(a)} − 2k+1

4∑
j=1

<{ıx(a)+1−T (y
(a)
j )}.

Again, because the set of elements {y(a)
j }4j=1 form a coset, we know that the value of the 4-term sum

4∑
j=1

<{ıx(a)+1−T (y
(a)
j )} equals either 0 or else,± 2.

As a result, we see that balance to within 2 cannot be attained in the present setup, we are only guaranteed to have
symbol balance B in the range 10 ≤ B ≤ ((4× 2k) + 10). We introduce in the subsection below, a modification to
the construction of Family J5,LEC in Construction 1 by introducing certain ±1 multiplicative terms, which we term
as Flipping Factors (FF) (see Definition 1). We will refer to the modified construction as the Balanced Construction
and will use the notation J5,BAL to denote the balanced sequence family resulting from the construction.

Remark 6 (Explaining Upper Bound of 2b2m−1

6 c on Family Size). The construction procedure outlined here for
both Families J5,LEC and J5,BAL has the feature that each sequence {J (a)(t)} belonging to either family is derived by
interleaving sequences from K possessing the same x parameter, namely, x(a). As noted above, in this setting, to
ensure that each sequence has balance to within 2, we must meet the trace condition for symbol balance, namely
that

tr(y(a)
0 ) = (x(a) + k + 1) (mod 2), ∀a ∈ [M ].

Let us consider the case when (x(a) + k + 1) = 0. It follows from this condition for balance that each sequence
{J (a)(t)} is obtained by interleaving 5 sequences from K having y-parameters

(
y

(a)
j , j ∈ [5]

)
, with y(a)

j satisfying:

tr(y(a)
j ) = 0,

for j = 0 and two other non-zero values of j, j ∈ [5]. But there are only 2m−1/2 parameters y, t ∈ H , having trace-
value equal to zero. For this reason the size of Families J5,LEC, J5,BAL is upper bounded by the value 2×

(
b2m−1/6c

)
.

B. The Balanced Construction

Associated to each index a, a ∈ [M ], we introduce a set of 5 FF corresponding to the set of 5 binary variables

{ε(a)
j ∈ {0, 1}}, j ∈ [5], (74)

that are used to selectively complement the 5 Z4-linear sequences {K(a)
j (t)}4j=0 that are interleaved to yield the

sequence {J (a)(t)} belonging to Family J5,LEC in Construction 1. The reason for regarding these as FF is because
they appear in balance and correlation expressions, in the multiplicative ±1 form (−1)ε

(a)
j .

Construction 2 (Family J5,BAL). Let β be an element of R4m having order n = 210−1. Let (H,W ) be an admissible
pair of subspaces as described in Section V-B and let Y (H,W ) be an admissible parameter matrix as defined



in Section V-C. Let y(a)
j denote the entry in the ath row, a ∈ [M ], and jth column, j ∈ [5], of Y (H,W ). Let

{ε(a)
j | a ∈ [M ], j ∈ [5]} be a collection of FF as defined in (74). For x ∈ {0, 1} ⊆ Z4, y ∈ H , we define the

sequence

K(x, y, t) := MSB
{

3t
[
x+ T ([1 + 2y]βt)

]}
, t ∈ [2n].

Then the Balanced Family J5,BAL, is a family of M = 2b2m−1/6c binary sequences, each having period 10n. The
a-th sequence {J (a)(t)}, a ∈ [M ], in the family is obtained by CRT-based interleaving of the 5 Z4-linear sequences{
{K(x(a), y

(a)
j , `) + ε

(a)
j }
}4

j=0
, where

x(a) =

{
0, a ∈ [M/2],

1, M/2 + 1 ≤ a ≤ (M − 1).

Thus the a-th sequence {J (a)(t)}, a ∈ [M ], in Family J5,BAL, is given by

J (a)(t) = K(x(a), y
(a)
j , `) + ε

(a)
j , t ∈ N, (75)

in which j = t (mod 5) and ` = t (mod 2n), and where, further, the FF are chosen in such a manner that each
sequence {J (a)(t)}, a ∈ [M ], has symbol balance to within 2.

Remark 7. 1) It is shown in Section VIII-C below, that the FF
(
ε
(a)
j , j ∈ [5]

)
, a ∈ [M ] can be selected in such

a way that each sequence {J (a)(t)} has symbol balance to within 2.
2) An inspection of Constructions 1 and 2, will show that apart from the addition of FF {ε(a)

j }, the balanced Family

J5,BAL is identical to the low-even-correlation Family J5,LEC. Thus if we set ε(a)
j = 0 for all a ∈ [M ], j ∈ [5]}

in the construction of Family J5,BAL, we will recover Family J5,LEC.

C. Selection of FF to Achieve Balance

In this section, we will show how it is possible to select the FF so as to ensure that each sequence in Family
J5,BAL has symbol balance to within 2. It will be shown below that the introduction of these FF does not impact
the maximum magnitude of an even correlation, so that the correlation parameters Ωa,max, Ωc,max associated to
Family J5,BAL remain upper bounded by the value ((8× 2k) + 10).

With the introduction of these FF, from (72), we have that the balance expression for a sequence {J (a)(t)} in
the balanced Family J5,BAL becomes:

10n−1∑
t=0

(−1)J
(a)(t) =

4∑
j=0

2n−1∑
t=0

(−1)K
(
x(a), y

(a)
j ,t
)

+ ε
(a)
j ,

= (−2)

4∑
j=0

(−1)ε
(a)
j <{ıx(a)} − 2k+1

4∑
j=0

(−1)ε
(a)
j <{ıx(a)+k−T (y

(a)
j )}.

The same argument as before tells us that to attain balance to within 2, we must continue to have

tr(y(a)
0 ) = x(a) + k + 1 (mod 2). (76)

Focusing on the term

−2k+1
4∑
j=0

(−1)ε
(a)
j <{ıx(a)+k−T (y

(a)
j )},

we see that in order to achieve balance within 2, we must make this term equal to 0 in value. There are 5 terms
in the sum. Of these, on account of our choice in (76), the term j = 0 contributes 0. The same is true of 2 other
values in the summation, since in the set {y(a)

j , j = 1, 2, 3, 4}, two of the elements have binary trace value = 0
and two have binary trace value equal to 1. Thus we are left with 2 terms, say associated to j = j1 and j = j2,
where the terms

−2k+1(−1)ε
(a)
j <{ıx(a)+1−T (y

(a)
j )}, for j = j1, j2,



take on values ±2k+1. Clearly, by appropriately choosing the two FF ε
(a)
j1
, ε

(a)
j2

, we can ensure that the overall
contribution of the term multiplied by −2k+1 equals zero.

With this choice of FF, the expression for sequence balance reduces to
10n−1∑
t=0

(−1)J
(a)(t) = (−2)

4∑
j=0

(−1)ε
(a)
j <{ıx(a)}.

If x(a) = 1, then the value of the sum
4∑
j=0

(−1)ε
(a)
j <{ıx(a)}

is zero. If x(a) = 0, then the value of this term equals

(−2)

4∑
j=0

(−1)ε
(a)
j ,

which can take on values in the set

{±10, ±6, ±2}.
However, we still have the freedom to choose the values of the three remaining FF, i.e., the FF ε

(a)
j , for j ∈

{0, 1, 2, 3, 4} \ {j1, j2}. By exercising this choice, it is clear that we can ensure that the magnitude of the balance
equals at most 2.

D. No Impact on Upper Bound on Correlation Values

We show here that the flipping of individual Z4-linear sequences does not impact the upper bound of 2(5+4(2k))
on even-correlation values. Thus, all non-trivial even correlation magnitudes in the balanced Family J5,BAL, will be
shown to be upper bounded by the value 2(5 + 4(2k)). To see this, we go back and examine how the reduction in
maximum nontrivial correlation magnitude from 2(5 + 5(2k)) to 2(5 + 4(2k)) was achieved in the case of Family
J5,LEC. We can clearly, ignore the trivial case when a = b, τ = 0.

1) Case λ = 0, and either ν 6= 0 or a 6= b: The cross-correlation between two sequences in Family J5,BAL can
be expressed in the form

Ω(a, b, τ) :=

10n−1∑
t=0

ıJ
(a)(t+ τ)−J (b)(t),

=

4∑
j=0

2n−1∑
`=0

(−1)K
(a)
j⊕ν(`+λ)−K(b)

j (`)+ε
(a)
j⊕ν+ε

(b)
j .

Let us define

q(a, b, j, ν) = ε
(a)
j⊕ν + ε

(b)
j (mod 2),

and let us adopt the abbreviation q(j) in place of q(a, b, j, ν). Then in the presence of the FF, we have that

Ω(a, b, τ) =

4∑
j=0

(−1)q(j) φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
.

Recall from (38) that for λ = 0, the cross-correlation of a pair of distinct Z4-linear sequences {K(xi, yi, t)}, {K(xj , yj , t)}
is given by

φij(0) =

{
0, xi 6= xj ,
−2, xi = xj , yi 6= yj .

It follows as a result, that for λ = 0, and either ν 6= 0 or a 6= b, we have in the case of Family J5,BAL that

| Ω(a, b, τ) | = |
4∑
j=0

φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , 0

)
| ≤ 10,

just as was the case with Family J5,LEC.



2) λ 6= 0: In this case, in the presence of the FF, from (62), we see that the correlation values are given by

Ω(a, b, τ) =

4∑
j=0

(−1)q(j) φ

(
x(a), y

(a)
j⊕ν , x

(b), y
(b)
j , λ

)
,

=


∑4

j=0(−1)q(j)
(

(−2)<{ı(x(a)−x(b))} − 2k+1<
{
ı(x

(a)−x(b)) + k−T (e(y
(a)
j⊕ν ,y

(b)
j ,λ)

})
, λ even,∑4

j=0(−1)q(j)
(

(−2)<{ı(3x(a)−x(b))} − 2k+1<
{
ı(3x

(a)−x(b)) + k−T (f(y
(a)
j⊕ν ,y

(b)
j ,λ)

})
, λ odd,

(77)

where µ, e(y(a)
j⊕ν , y

(b)
j , λ) and f(y

(a)
j⊕ν , y

(b)
j , λ) are as defined earlier in equations (64), (63) and (66). Let us define

A :=

4∑
j=0

<
{
ı(x

(a)−x(b)) + k−T (e(y
(a)
j⊕ν ,y

(b)
j ,λ)

}
, for λ even λ 6= 0, (78)

B :=

4∑
j=0

<
{
ı(3x

(a)−x(b)) + k−T (f(y
(a)
j⊕ν ,y

(b)
j ,λ)

}
, for λ odd. (79)

The subspace and coset-decomposition-based construction of Family J5,LEC was able to bring down the value of
maximum correlation magnitude from 2(5 + 5(2k)) to 2(5 + 4(2k)) by ensuring for the case λ even, that at least
one term in the set {

ı(x
(a)−x(b)) + k−T (e(y

(a)
j⊕ν ,y

(b)
j ,λ) | j ∈ [5]

}
,

was imaginary, so that there were at most 4 nonzero summands on the right, in the expression for A in (78). This
led to the bound

|A| ≤ 4.

The corresponding result for the λ odd case is that that at least one term in the set{
ı(3x

(a)−x(b)) + k−T (f(y
(a)
j⊕ν ,y

(b)
j ,λ) | j ∈ [5]

}
,

was imaginary, so that we analogously had at most 4 nonzero summands on the right in the expression for B in
(79), leading to the bound

|B| ≤ 4.

The addition of FFs {ε(a)
j }4j=0 to the interleaved sequences does not impact this argument since this merely causes

the terms A,B to be replaced by corresponding terms A′, B′ given by

A′ :=

4∑
j=0

(−1)q(j) <
{
ı(x

(a)−x(b)) + 1−T (e(y
(a)
j⊕ν ,y

(b)
j ,λ)

}
,

B′ :=

4∑
j=0

(−1)q(j) <
{
ı(3x

(a)−x(b)) + 1−T (f(y
(a)
j⊕ν ,y

(b)
j ,λ)

}
.

The introduction of the multiplicative factors (−1)q(j) multiplying individual terms in each summand of A, B,
clearly does not change the number of zero summands and thus even in the presence of FF, the corresponding
bounds

|A′| ≤ 4, |B′| ≤ 4,

continue to hold. It follows that the maximum even-correlation magnitude, even in the case of the balanced Family
J5,BAL, is upper bounded by the value 2(5 + 4(2k)).



IX. CONSTRUCTING FAMILY JNAV OF PERIOD 10230

The focus in this section is on the case m = 10 corresponding to period L = 10230 that is commonly encountered
in a GNSS setting, see Table II. Note that 10 = 2 (mod 4), so that the results derived in prior sections for the
families J5,LEC, J5,BAL are applicable here. The sequences in Family J5,BAL have symbol balance within 2 and have
even-correlation parameters Ωa,max, Ωc,max upper bounded by the value 2(5 + 4(2k)). However as discussed in
Section I-A, in the setting of a GNSS, two important additional design considerations are lowering of odd-correlation
values and pairing for orthogonality. Thus the aim in this section, is to perform operations on the sequences within
the balanced Family J5,BAL, that preserve balance and even-correlation properties while at the same time
• lowering maximum odd-correlation magnitudes Ω

(odd)
a,max and Ω

(odd)
c,max,

• and permitting a pairing of the sequence set into pairs, where within each pair {J (a)(t)}, {J (b)(t)}, the
sequences are perfectly orthogonal at zero shift.

A. List of Permissible Operations

A list of operations that help ensure lower maximum odd-correlation magnitude and the orthogonal-pairs property
is provided here, that are permissible in the sense that they preserve the balance and even-correlation properties of
Family J5,BAL.

1) Cyclically shifting the entire sequence: Replacing each sequence {J (a)(t)} of period 10230 by an appropriate
cyclic shift {J (a)(t+τ (a))}, where (t+τ (a)) is computed modulo 10n clearly does not impact symbol balance
or even-correlation properties. Odd-correlation properties are however, affected by cyclic shifts and thus one
can use the flexibility in choice of cyclic shift parameters τ (a) to lower maximum odd-correlation magnitudes
Ω

(odd)
a,max and Ω

(odd)
c,max.

2) Exercise Flexibility in Selecting Sequence {K(a)
0 (t)}: As pointed out in Remark 5, there is considerable

flexibility in selecting the sequence {K(a)
0 (t)} associated to index j = 0 within the framework of Construction 1

of Family J5,LEC. While Construction 2 of Family J5,BAL introduces flipping factors {ε(a)
j } to achieve symbol

balance to within 2, it retains all of the flexibility in selecting sequence {K(a)
0 (t)} that Construction 1 provides.

It follows from Section V-C that for a given index a ∈ [M ] and corresponding value x(a), the only restriction
in selecting the remaining parameter y(a)

0 is that

y
(a)
0 ∈

{
T0, if x(a) = 0 or equivalently, for 0 ≤ a ≤ 84,

T1, if x(a) = 1 or equivalently, for 85 ≤ a ≤ 169,

where the sets T0, T1 are as defined in equations (50) and (51) respectively. This flexibility can be used to
minimize odd-correlation parameters Ω

(odd)
a,max and Ω

(odd)
c,max.

3) Selection of the Flipping Factors: In Construction 2, the FFs are chosen so as to ensure that each sequence
{J (a)(t)} in Family J5,BAL, has symbol balance to within 2. However, there is some flexibility in the selection of
the FF employed. This flexibility in selection of flipping patterns can also be employed to lower odd-correlation
magnitudes.

4) Imparting a Different Cyclic Shift to the Single, j = 0 Sequence {K(a)
0 (t)}: In both Constructions 1

and 2, generating Families J5,LEC and J5,BAL respectively, the 5 sequences {K(a)
j (`)}4j=0 that are interleaved to

obtain a single sequence {J (a)(t)} are all “in-phase” as they are given by expressions of the form:

K
(a)
j (`) = MSB

{
3`
(
x(a) + T

(
[1 + 2y

(a)
j ]β`+λ

(a)
j

))}
,

with cyclic-shift-parameter λ(a)
j set equal to 0, i.e., λ(a)

j = 0. Our proof of the upper bound 2(5 + 4(2m/2))
on Ωmax assumed this form of the Z4-linear sequences being interleaved. Clearly the balance property of the
interleaved sequence {J (a)(t)} remains unaffected if we replace any constituent interleaved sequence {K(a)(`)}
by a cyclic shift {K(a)(`+ λ

(a)
j )}.

We will now show that the even-correlation properties remain unaffected even if we replace just the j = 0

sequences {K(a)
0 (`)} for a ∈ [M ], by the cyclic shift {K(a)

0 (`+λ
(a)
0 )}, where the addition (`+λ

(a)
0 ) is computed



modulo 2n. Thus under this procedure, the phase of the remaining sequences
{
{K(a)

j (`)} | j = 1, 2, 3, 4
}

is
kept unchanged, i.e., they are not cyclically shifted.
To see this, we rewrite the expression for the correlation of a pair of sequences in Family JNAV appearing
in (59) to account for this change. We only consider the case ν 6= 0 here. The case ν = 0 can be similarly
argued.

Ω(a, b, τ) =

10n−1∑
t=0

ıJ
(a)(t+ τ)−J (b)(t)

=

2n−1∑
`=0

(−1)K
(a)
ν (`+λ)−K(b)

0 (`+λ
(b)
0 )

︸ ︷︷ ︸
Γ1 ⇔ (j = 0) term

+

2n−1∑
`=0

(−1)K
(a)
0 (`+λ

(a)
0 +λ)−K(b)

5	ν(`)

︸ ︷︷ ︸
Γ2 ⇔ (j ⊕ ν = 0) term

+
∑

0≤j≤4,
j 6=0, j⊕ν 6=0

2n−1∑
`=0

(−1)K
(a)
j (`+λ)−K(b)

j (`)

︸ ︷︷ ︸
Γ3 ⇔ (j 6= 0, j ⊕ ν 6= 0) term

.

In the equation above, by 5	 ν we mean the subtraction (5− ν) (mod 5). Also, clearly, the terms Γ1, Γ2 are
each upper bounded in magnitude by the value (2 + 2k+1). Thus it suffices to show that the term Γ3 satisfies
the upper bound

Γ3 ≤ 2 + 2(2 + 2k+1) = 6 + 2k+2.

This will ensure that

| Γ1 + Γ2 + Γ3 | ≤ (8(2k) + 10).

To show that Γ3 ≤ 134, we first note from equations (41) and (44) that

Γ3 = (−2)
∑

0≤j≤4,
j 6=0, j⊕ν 6=0

<
{
ı(x

(a)−x(b))
}
− 2k+1

∑
0≤j≤4,

j 6=0, j⊕ν 6=0

<
{
ıx

(a)−x(b)+1−T
(
e(y

(a)
j⊕ν ,y

(b)
j ,µ)

)}
,

for λ even, λ 6= 0, and

Γ3 = (−2)
∑

0≤j≤4,
j 6=0, j⊕ν 6=0

<
{
ı(3x

(a)−x(b))
}
− 2k+1

∑
0≤j≤4,

j 6=0, j⊕ν 6=0

<
{
ı3x

(a)−x(b)+1−T
(
f(y

(a)
j⊕ν ,y

(b)
j ,µ)

)}
,

for λ odd. From our earlier Remark 5, appearing in Section VII, it follows that at least one summand in the
three-term sum ∑

0≤j≤4,
j 6=0, j⊕ν 6=0

<
{
ıx

(a)−x(b)+1−T
(
e(y

(a)
j⊕ν ,y

(b)
j ,µ)

)}

for the case λ even, λ 6= 0 is zero. It follows then that

Γ3 ≤ 2 + 2(2k+1) = 6 + 2k+2,

as desired. Similarly, at least one summand in the three-term sum∑
0≤j≤4,

j 6=0, j⊕ν 6=0

<
{
ı3x

(a)−x(b)+1−T
(
f(y

(a)
j⊕ν ,y

(b)
j ,µ)

)}

has the value zero for the case λ odd, so once again, we obtain the same upper bound Γ3 ≤ 6 + 2k+2.
Remark 8 (Admissible Cyclic Shifts). We note that operation 1 above permits cyclic shifting each sequence
{J (a)

t )} belonging to Family JNAV by an arbitrary cyclic shift. Operation 4 permits constituent sequence K(a)
o (t)



to be cyclically shifted prior to interleaving by an amount that is different from the cyclic shift applied to
the remaining 4 sequences {K(a)

j (t)}, j = 1, 2, 3, 4}. It follows from this that symbol balance and even-

correlation bound Ωmax remain unchanged if we apply cyclic shifts {λ(a)
j , j ∈ [5]} to the constituent sequences{

{K(a)
j (t)}, j ∈ [5]

}
, prior to interleaving, that satisfy

λ
(a)
i = λ

(a)
j , i, j ∈ {1, 2, 3, 4}.

Construction 3 (Family JNAV). Let m = 10 and let β be an element of R4m having order n = 2m−1 = 210−1.
Let (H,W ) be an admissible pair of subspaces as described in Section V-B and let Y (H,W ) be an admissible
parameter matrix as defined in Section V-C. Let y(a)

j denote the entry in the ath row, a ∈ [M ], and jth column,

j ∈ [5], of Y (H,W ). Let {ε(a)
j | a ∈ [M ], j ∈ [5]} be a collection of flipping factors as defined in (74). For

x ∈ {0, 1} ⊆ Z4, y ∈ H , we define the sequence

K(x, y, t) := MSB
{

3t
[
x+ T ([1 + 2y]βt)

]}
, t ∈ [2n].

Then the IZ4 Family JNAV, is a family of M = 170 binary sequences, each having period 10n = 10230. The
a-th sequence {J (a)(t)}, a ∈ [M ], in the family is obtained by CRT-based interleaving of the 5 Z4-linear

sequences
{
{K(x(a), y

(a)
j , `+ λ

(a)
j ) + ε

(a)
j }
}4

j=0
, where, the parameters{

x(a),
(
y

(a)
j , j ∈ [5]

)
,
(
λ

(a)
j , j ∈ [5]

) (
ε
(a)
j , j ∈ [5]

)}
satisfy the following requirements:

a)

x(a) =

{
0, a ∈ [M/2],

1, M/2 + 1 ≤ a ≤ (M − 1),

b) λ(a)
i = λ

(a)
j for all a ∈ [M ], 1 ≤ i, j ≤ 4,

c) the FF
(
ε
(a)
j , j ∈ [5]

)
, a ∈ [M ], are chosen in such a manner that each sequence {J (a)(t)}, a ∈ [M ], has

symbol balance to within 2,
d) the list of permissible operations given above is used to ensure that
• there exists a pairing

{(ai, bi) | ai, bi ∈ [M ], i ∈ [M/2]}
of parameters such that for each i ∈ [M/2], the corresponding pair of sequences

(
{J (ai)(t)}, {J (bi)(t)}

)
are orthogonal when in-phase, i.e.,

N−1∑
t=0

(−1)J
(ai)(t)+J(bi)(t) = 0,

and further that
• Family JNAV has low values of odd-correlation parameters Ω

(odd)
a,max and Ω

(odd)
c,max.

Table III lists the even and odd correlation, symbol balance and orthogonal-pairs properties of an example of
Construction 3.

X. COUPLED BINARY SHIFT-REGISTER IMPLEMENTATION

The IZ4 sequence family JNAV having period L = 10230 and size M = 170, can be simply generated using a pair
of coupled 55-bit binary shift registers (SR) along with a 5-bit cycling SR that carries out the flipping operation.

Let an index a ∈ [M ] be fixed. For simplicity, we will write {J(t)}, {Kj(t), (x, yj) and εj in place of {J (a)(t)},
{K(a)

j (t)}, (x(a), y
(a)
j ) and ε(a)

j respectively. Since interleaving is carried out based on the CRT, we have that

J(t) = Kj(`+ λj) + εj ,



where λj is the cyclic shift imparted to the jth interleaved sequence and where

` = t (mod 2n), and j = t (mod 5).

Let the sequence {R(t)} be defined by

R(t) = Kj(`+ λj),

so that

J(t) = R(t) + εj , where j = t (mod 5).

We focus first on the implementation of the sequence {R(t)}. The flipping factors {εj} will be taken into account
at a later stage. It follows that for 0 ≤ j ≤ 4, we have

R(5t+ j) = Kj

(
5t+ j + λj (mod 2n)

)
= MSB

{
35t+j+λj

[
x + T

(
β5t+j+λj [1 + 2yj ]

)]}
.

Set

η = 3β, γj = ηj+λj [1 + 2yj ], uj = x3j+λj .

Then we can write

R(5t+ j) = MSB
{
uj3

5t + T
(
γjη

5t
)}
.

Next, setting

ϕ = η5 = 3β5,

Qj(t) = T (γjϕ
t),

Pj(t) = uj3
5t = uj3

t,

Rj(t) = Qj(t) + Pj(t),

we obtain

R(5t+ j) = MSB {Pj(t) +Qj(t)} .
We now seek to identify the least-degree linear recursion satisfied by the sum sequence {Pj(t) + Qj(t)}. Let
f(x) =

∑10
k=0 fkx

k be the minimum polynomial of β5 over Z4. Then we have that
10∑
k=0

fk3
5k(3β)5k = 0 =⇒

10∑
k=0

fk3
kϕk = 0.

It follows that

g(x) =

10∑
k=0

fk3
k︸︷︷︸

gk

xk,

is the minimum polynomial of ϕ = 3β5. We have

Pj(t+ 1) + Pj(t) = uj3
t(3 + 1) = 0.

Thus the characteristic polynomial of the sequence {Pj(t)} is (x+ 1). It follows that the characteristic polynomial
of the sum sequence

Rj(t) = Qj(t) + Pj(t)

is given by (x+ 1)g(x). When α has minimum polynomial x10 +x3 + 1, it turns out that the minimum polynomial
mα5(x) of α5 over Z2 is given by

mα5(x) = x10 + x8 + x3 + x2 + 1.



Employing Graeffe’s root-squaring method to lift mα5(x), one obtains the minimum polynomial f(x) of β5 over
Z4:

f(x2) = (x10 + x8 + x2 + 1)2 − x6,

= x20 + 2x18 + x16 + 2x12 + 2x8 + 3x6 + x4 + 2x2 + 1

thus f(x) = x10 + 2x9 + x8 + 2x6 + 2x4 + 3x3 + x2 + 2x+ 1.

We have

g(x) =

10∑
k=0

fk3
kxk.

Thus:

g(x) = x10 + 2x9 + x8 + 2x6 + 2x4 + x3 + x2 + 2x+ 1.

We have

h(x) = (1 + x)g(x)

= x11 + 3x10 + 3x9 + x8 + 2x7 + 2x6 + 2x5 + 3x4 + 2x3 + 3x2 + 3x+ 1.

This leads to the recursion:

Rj(t+ 11) = Rj(t+ 10) +Rj(t+ 9) + 3Rj(t+ 8) + 2Rj(t+ 7)

+2Rj(t+ 6) + 2Rj(t+ 5) +Rj(t+ 4) + 2Rj(t+ 3) +Rj(t+ 2) +Rj(t+ 1) + 3Rj(t).

Since each of the 5 interleaved sequences satisfies this recursion, we have that the interleaved sequence R(t) satisfies
the recursion:

R(t+ 55) = R(t+ 50) +R(t+ 45) + 3R(t+ 40) + 2R(t+ 35)

+2R(t+ 30) + 2R(t+ 25) +R(t+ 20) + 2R(t+ 15) +R(t+ 10) +R(t+ 5) + 3R(t).

Let Simple, Binary Shift-Register Implementation
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Note: There are other novel hardware implementations as well.Figure 8: Generating sequences in Family JNAV using a pair of coupled 55-bit shift registers and a 5-bit pure cyclic

shift register. The upper register generates the LSB sequence {R0(t)} and the middle SR generates the sequence
{R1(t)}. Different sequences are generated by changing the initial conditions accordingly.

R(t) = R0(t) + 2R1(t), all t.



Then, taken modulo 2, this gives the following recursion for {R0(t)}:
R0(t+ 55) = R0(t+ 50) +R0(t+ 45) +R0(t+ 40)

+R0(t+ 20) +R0(t+ 10) +R0(t+ 5) +R0(t)

The recursion for {R1(t)} takes on the nonlinear form:

R1(t+ 55) =
(
R1(t+ 50) +R1(t+ 45) +R1(t+ 40) +R1(t+ 20) +R1(t+ 10) +R1(t+ 5) +R1(t)

)
+
(
R0(t+ 40) +R0(t+ 35) +R0(t+ 30) +R0(t+ 25) +R0(t+ 15) +R0(t)

)
σ2

(
R0(t+ 50), R0(t+ 45), R0(t+ 40), R0(t+ 20), R0(t+ 10), R0(t+ 5), R0(t)

)
.

where the second elementary-symmetric function σ2(a, b, c, d, e, f, g) is the sum of all possible products taken 2 at
a time:

σ2(a, b, c, d, e, f, g) = ab+ ac+ ad+ ae+ af + ag + bc+ bd+ be+ bf + bg +

cd+ ce+ cf + cg + de+ df + dg + ef + eg + fg.

From this we see that it is possible to generate the sequence {R(t)} using a pair of coupled binary SR. A simple
cycling SR can be used to account of the presence of the FF:

J(t) = R(t) + εj , where j = t (mod 5).

XI. CONSTRUCTION OF ADDITIONAL FAMILIES OBTAINED BY ADOPTING THE SAME S-I-F APPROACH

The S-I-F approach can be used to construct additional families of low-correlation binary sequences having length
of the form 2`(2m−1) for ` odd, ` ≥ 7 for m such that (2m−1, `) = 1. We illustrate in Section XI-A with the case
` = 7. The same general approach can also be used to construct families of low-correlation quaternary sequences
having period of the form `(2m − 1), once again for m such that (`, 2m − 1) = 1. Examples with ` = 5, 7 are
provided below in Sections XI-B and Section XI-C respectively.

A. A Binary Sequence Family Having Period 14(2m − 1)

To ensure that (7, 2m − 1) = 1 for m = 2k even, it can be verified that we must have m = 2, 4 (mod 6). The
S-I-F approach can be applied to construct a family of binary sequences having size M = 2m

8 = 2m−3, maximum
correlation upper bounded by the quantity:

Ωmax ≤ 10(2k) + 14,

and symbol balance to within 2. Note that naive interleaving would result in a weaker correlation bound of 14(2k+1).
Since the construction approach is very similar to that used in the construction of families J5,LEC, J5,BAL, we only
provide a sketch of the construction. The starting point is once again, the sequence family

K =
{
{K(x, y, t)}2n−1

t=0 | x ∈ {0, 1}, y ∈ H
}
,

where K(x, t) is as defined in (15) and where H as before, is a subspace of F2m of dimension (m− 1) that does
not contain 1. As before, the construction of Family J7,LEC presented here will be such that all of the 7 sequences
from K employed in the construction of a single sequence in Family J7,LEC will share the same value of parameter
x, either x = 0 or x = 1. Again, the Family J7,LEC will be constructed in such a manner that M/2 sequences in
J7,LEC are associated to parameter x = 0 and an equal number, M/2, to parameter x = 1. To construct this family
we apply an admissible parameter matrix Y (H,W ). While H is unchanged, the subspace W is however, different
and chosen in this case to be a three-dimensional subspace of H given by

W = 〈γ0, γ1, γ2〉 = {0, γ0, γ1, γ0 + γ1, γ2, γ0 + γ2, γ1 + γ2} ,
where {γi}2i=0 are selected such that tr(γi) = 1, i = 0, 1, 2. Since W is a subgroup of H under modulo-2 addition,
the set H can be partitioned as the disjoint union of 2m−4 cosets of W . Let {ga}2

m−4−1
a=0 and {ha}2

m−4−1
a=0 be two

sets of coset representatives for the cosets of W in H . We set

x(a) =

{
0, a ∈ [M/2],

1, M/2 ≤ a ≤ (M − 1),



and associate the coset representatives {ga} and {ha} with Z4-linear sequences having parameters x(a) = 0 and
x(a) = 1 respectively. We do this by selecting the coset representatives {ga} and {ha} such that

tr(ga) + k + x(a) = tr(ga) + k = 0 mod 2, 0 ≤ a ≤M/2− 1, (80)

tr(ha) + k + x(a+M/2) = tr(ha) + k + 1 = 0 mod 2, 0 ≤ a ≤M/2− 1. (81)

This can always be done. This selection will be used to ensure that the sequences have symbol balance to within
2. Next, for 0 ≤ a ≤M/2− 1, we set:(

y
(a)
j , j = 0, 1, · · · , 6

)
=

(
ga, ga + γ0, ga + γ1, ga + γ0 + γ1, ga + γ2, ga + γ0 + γ2, ga + γ1 + γ2

)
,(

y
(a+M/2)
j , j = 0, 1, · · · , 6

)
=

(
ha, ha + γ0, ha + γ1, ha + γ0 + γ1, ha + γ2, ha + γ0 + γ2, ha + γ1 + γ2

)
.

a) Even-Correlation Properties: The upper bound on correlation can be established by setting up the sum-
matrix (see Table VIII) S for this case. The (j, k)th entry of S is given by y(b)

j +y
(a)
k . It follows that each entry in the

table is of the form ∆+u where ∆ = y
(a)
0 +y

(b)
0 and u is a linear combination of the γi, i = 0, 1, 2. The summand ∆

has been omitted for clarity and the table only displays the corresponding value of u. The boxed entries illustrate the
sum-constant, trace-different property along an example wrap-around diagonal. The sum-constant, trace-different

Table VIII: The sum-matrix S whose (j, k)th entry is given by y(b)
j + y

(a)
k .

tr(·) 0 1 1 0 1 0 0

y
(b)
j /y

(a)
k 0 γ0 γ1 γ0 + γ1 γ2 γ0 + γ2 γ1 + γ2

0 0 γ0 γ1 γ0 + γ1 γ2 γ0 + γ2 γ1 + γ2

γ0 γ0 0 γ0 + γ1 γ1 γ0 + γ2 γ2 γ0 + γ1 + γ2

γ1 γ1 γ0 + γ1 0 γ0 γ1 + γ2 γ0 + γ1 + γ2 γ2
γ0 + γ1 γ0 + γ1 γ1 γ0 0 γ0 + γ1 + γ2 γ1 + γ2 γ0 + γ2

γ2 γ2 γ0 + γ2 γ1 + γ2 γ0 + γ1 + γ2 0 γ0 γ1

γ0 + γ2 γ0 + γ2 γ2 γ0 + γ1 + γ2 γ1 + γ2 γ0 0 γ0 + γ1

γ1 + γ2 γ1 + γ2 γ0 + γ1 + γ2 γ2 γ0 + γ2 γ1 γ0 + γ1 0

property in this case has the property this time, that every parallel diagonal has two sets of elements satisfying the
sum-constant, trace-different property. Using this it is straightforward to verify the correlation bound

Ωmax ≤ 2(5(2k) + 7) = 10(2k) + 14.

This has been experimentally verified for m = 10, k = 5, corresponding to sequence length 14322, when the above
bound evaluates to 334.

b) Balance Property: The expression for symbol balance in the presence of flipping factors {εj ∈ {0, 1}}6j=0

is given by:
14n−1∑
t=0

(−1)J
(a)(t) =

6∑
j=0

2n−1∑
t=0

(−1)K
(
x(a), y

(a)
j ,t
)

+ ε
(a)
j ,

= (−2)

6∑
j=0

(−1)ε
(a)
j <{ıx(a)} − 2k+1

6∑
j=0

(−1)ε
(a)
j <{ıx(a)+k−T (y

(a)
j )}.

Our choice of coset leaders as in (80), (81), has ensured that for each 0 ≤ a ≤ M − 1, there are exactly three
values of index j, 0 ≤ j ≤ 6, for which the trace condition

tr(y(a)
j ) = (x(a) + k + 1),



is satisfied. For these three values of j, the term <
{
ıx

(a)+k−T (y
(a)
j )
}

evaluates to zero. Thus in the sum,

6∑
j=0

(−1)ε
(a)
j <{ıx(a)+k−T (y

(a)
j )},

exactly four terms survive, and the corresponding flipping factors can be used to ensure that this sum equals zero.
The remaining three flipping factors can be used to ensure that symbol balance to within 2 is achieved.

B. A Quaternary Sequence Family Having Period 5(2m − 1)

By adopting the same S-I-F approach as above, but interleaving this time, quaternary Family A sequences [13],
[33], [34] in place of Z4-linear sequences, it is possible to construct families of low-correlation, quaternary sequences
having period 5(2m−1) and (7(2m−1). We deal with the case when the period is 5(2m−1) in the present subsection,
and period 7(2m−1) in the subsection following. Here again, the selection of the specific sequences to be interleaved
is guided by the closed-form expression appearing in Theorem 2 for an exponential sum over the Galois ring.

a) Quaternary Family A: Family A is the family of (2m + 1) quaternary sequences of period n = 2m − 1
given by

A =
{
{T ([1 + 2y]αt)} | y ∈ Tm

}
∪ {2T (αt)}.

The construction we present in this subsection assumes that m = 2k = 2 (mod 4). Our construction will not
make use of the sequence {2T (αt)}, so we will work with the smaller (by one) family A∗ defined by

A∗ = {{Q(y, t)} | y ∈ Tm} ,
where by a slight abuse in notation, we define 2

Q(y, t) := T ([1 + 2y]βt), y ∈ Tm, t ∈ [n].

Let W be a two-dimensional subspace of F2m as introduced in Section V:

W = {0, γ0, γ1, γ0 + γ1},
where tr(γ0) = 1, tr(γ1) = 1. The 2m−2 cosets of W in F2m partition F2m . Set

M = b2
m

5
c.

Let {ua}2
m−2−1
a=0 be an ordered set of 2m−2 coset representatives of the cosets of W in F2m . Let Y be an (M × 5)

array, defined as follows. The (a, j)th element 0 ≤ a ≤M − 1, 0 ≤ j ≤ 4, of Y will be denoted by y(a)
j . We set

(y
(a)
1 , y

(a)
2 , y

(a)
3 , y

(a)
4 ) = (ua, ua + γ0, ua + γ1, ua + γ0 + γ1), a ∈ [M ].

The cosets of W associated to the subset of coset representatives {ua}2
m−2−1
a=M contain a total of (2m−4M) elements.

We select an arbitrary subset of size M from the set

{ua +W |M ≤ a ≤ 2m−2 − 1},
order them in some arbitrary fashion, and assign to these M elements, the labels {y(a)

0 | 0 ≤ a ≤ (M − 1)}. This
is possible since

M = b2
m

5
c ⇒ 2m − 4M ≥ M.

This completes description of the matrix Y . We now define Family Q5,LEC as follows. The ath sequence {J (a)
Q5 (t)},

a ∈ [M ] of Family Q5,LEC is obtained by CRT-based interleaving the 5 quaternary sequences:

{{Q(y
(a)
j , `)} | j = 0, 1, 2, 3, 4}.

Thus we have

J
(a)
Q5 (t) = Q(y

(a)
j , `), j = t (mod 5), ` = t (mod n).

2The function Q(y, t) introduced in the present subsection is the same as the function Q(x, y, t) introduced earlier in Section III with
parameter x = 0.



b) Even-Correlation Properties: The correlation ρab(τ) between two sequences in Family Q5,LEC at shift τ
with

ν = τ (mod 5) λ = τ (mod n)

is defined by

ρab(τ) :=

5n−1∑
t=0

ıJ
(a)
Q5 (t+τ)−J

(b)
Q5 (t),

=

4∑
j=0

n−1∑
`=0

ıQ(y
(a)
j⊕ν ,`+λ)−Q(y

(b)
j ,`),

=

4∑
j=0

{
−1 − 2kı

k−T (e(y
(a)
j⊕ν , y

(b)
j , λ))

}
,

= −5− 2k


4∑
j=0

ı
k−T (e(y

(a)
j⊕ν , y

(b)
j , λ))

 ,

where as before,

e(y
(a)
j⊕ν , y

(b)
j , λ) = µ+ y

(a)
j⊕ν + µ2(y

(a)
j⊕ν + y

(b)
j ).

A sum-matrix table identical to the sum-matrix table appearing in Table VII can be set up here. The same sum-
constant, trace-different property holds here as well and ensures that not all the 5 terms{

ı
k−T (e(y

(a)
j⊕ν , y

(b)
j , λ))

}4

j=0

,

are either all 5 real or all 5 imaginary. This results in the upper bound on maximum even-correlation parameter
Ωmax given by

Ωmax ≤
√

(5 + 4(2k))2 + (2k)2.

This has been verified through simulation to hold for the case m = 10 yielding the value Ωmax = 136.795.
c) Symbol Balance: We define the symbol balance expression for the quaternary sequence J (a)

Q5 (t) to be given
by

|
5n−1∑
t=0

ıJ
(a)
Q5 (t) | = |

4∑
j=0

n−1∑
`=0

ıQ(y
(a)
j ,`) |,

= |
4∑
j=0

{
−1 − 2kık−T (y

(a)
j )
}
| .

With the inclusion of flipping factors {φj}4j=0, φj ∈ {±1} that change the signs of the constituent quaternary
sequences that are being interleaved, this changes to

|
5n−1∑
t=0

(−1)J
(a)
Q5 (t) | = |

4∑
j=0

{
−1(−1)φj − (−1)φj2kık−T (y

(a)
j )
}
|,

= | −
4∑
j=0

(−1)φj − 2kık
4∑
j=0

(−1)φj ı−T (y
(a)
j ) | .

It is straightforward to verify that the flipping factors do not impact the value of Ωmax. Since the subset {y(a)
j , j =

1, 2, 3, 4} forms a subspace, it follows that of the 4 binary trace values

T (y
(a)
j ) (mod 2) = tr((y(a)

j ), j = 1, 2, 3, 4,



two are equal to 0 and two are equal to 1. Equivalently, two values ı−T (y
(a)
j ) are real and two are imaginary. Thus by

appropriate choice of flipping factors {φj , j = 1, 2, 3, 4}, one can establish that the contribution to symbol balance
of the terms corresponding to j = 1, 2, 3, 4 is zero. By further utilizing the remaining freedom in selecting the
flipping factors, one can ensure that each sequence {J (a)

Q5 (t)} has symbol balance

|
5n−1∑
t=0

(−1)J
(a)
Q5 (t) | ≤ (1 + 2k).

This has been verified through simulation to hold for the case m = 10. We use Q5,BAL to denote sequence family
Q5,LEC after the incorporation of flipping factors. Thus the symbol balance of Family Q5,BAL is identical to that of
Family A as the symbol balance for Family A is also given by (1 + 2k).

C. A Quaternary Sequence Family Having Period 7(2m − 1)

By adopting the same S-I-F approach as above, but interleaving this time, 7 quaternary Family A∗ sequences of
period 2m − 1 where

m = 2 or 4 (mod 6),

it is possible to construct families of low-correlation, quaternary sequences having period (7(2m − 1)). Let W be
a three-dimensional subspace as in Section XI-A given by

W = 〈γ0, γ1, γ2〉 = {0, γ0, γ1, γ0 + γ1, γ2, γ2 + γ0, γ2 + γ1} ,
where {γi}2i=0 are selected such that tr(γi) = 1, i = 0, 1, 2. The 2m−3 cosets of W in F2m partition F2m . Set

M = 2m−3.

Let {ua}2
m−3−1
a=0 be an ordered set of 2m−3 coset representatives of the cosets of W . Let Y be an (M × 7) array,

defined as follows. The (a, j)th element 0 ≤ a ≤M − 1, 0 ≤ j ≤ 6, of Y will be denoted by y(a)
j . We set

(y
(a)
0 , y

(a)
1 , · · · , y(a)

6 ) =
(
ua, ua + γ0, ua + γ1, ua + γ0 + γ1, ua + γ2, ua + γ2 + γ0, ua + γ2 + γ1

)
.

We now define Family Q7,LEC as follows. The ath sequence {J (a)
Q7 (t)}, a ∈ [M ] of Family Q7,LEC is obtained by

interleaving the 7 quaternary sequences:

{{Q(y
(a)
j , `)} | j = 0, 1, 2, · · · , 6}.

Thus we have

J
(a)
Q7 (t) = Q(y

(a)
j , `), j = t (mod 7), ` = t (mod n).

1) Even-Correlation Properties: The correlation ρab(τ) between two sequences in Family Q7,LEC at shift τ with

ν = τ (mod 7) λ = τ (mod n)

is given by

ρab(τ) =

n−1∑
t=0

ıJ
(a)
Q7 (t+τ)−J

(b)
Q7 (t),

=

6∑
j=0

n−1∑
`=0

ıQ(y
(a)
j⊕ν ,`+λ)−Q(y

(b)
j ,`),

=

6∑
j=0

{
−1 − 2kı

k−T (e(y
(a)
j⊕ν , y

(b)
j , λ))

}
,

= −7− 2k


6∑
j=0

ı
k−T (e(y

(a)
j⊕ν , y

(b)
j , λ))

 ,



where

e(y
(a)
j⊕ν , y

(b)
j , λ) = µ+ y

(a)
j⊕ν + µ2(y

(a)
j⊕ν + y

(b)
j ).

A sum-matrix table identical to the sum-matrix table appearing in Table VIII can be set up here. The same sum-
constant, trace-different property holds here as well and ensures that there are at least two real terms as well as at
least two imaginary terms in the set {

ı
k−T (e(y

(a)
j⊕ν , y

(b)
j , λ))

}6

j=0

.

This results in the upper bound on maximum even-correlation parameter Ωmax given by

Ωmax ≤
√

(7 + 5(2k))2 + (2(2k))2.

This has been verified on MATLAB to hold for the case m = 10 yielding the value

Ωmax = 178.8435.

2) Symbol Balance: We define the symbol balance expression for the quaternary sequence J (a)
Q7 (t) to be given

by

|
7n−1∑
t=0

ıJ
(a)
Q7 (t) | =

6∑
j=0

n−1∑
`=0

ıQ(y
(a)
j ,`),

=

6∑
j=0

{
−1 − 2kık−T (y

(a)
j )
}
.

With the inclusion of flipping factors {φj}6j=0, φj ∈ {±1} that change the signs of the constituent quaternary
sequences that are being interleaved, this changes to

|
7n−1∑
t=0

(−1)J
(a)
Q7 (t) =

6∑
j=0

{
−1(−1)φj − (−1)φj2kık−T (y

(a)
j )
}
,

= −
6∑
j=0

(−1)φj − 2kık
6∑
j=0

(−1)φj ı−T (y
(a)
j ).

It is straightforward to verify that the flipping factors do not impact the value of Ωmax. Since the subset {y(a)
j , j =

0, 1, · · · , 6} form a subspace, it follows that of the 7 binary trace values

T (y
(a)
j ) (mod 2) = tr((y(a)

j ), j = 1, 2, · · · , 7

three or more are equal to 0 and three or more are equal to 1. Equivalently, three of the 7 values ı−T (y
(a)
j ) are real and

three of them are imaginary. It can be verified that by appropriate choice of flipping factors {φj , j = 0, 1, 2, · · · , 6},
one can ensure that each sequence {J (a)

Q7 (t)} once again, has symbol balance

|
7n−1∑
t=0

(−1)J
(a)
Q7 (t) | ≤ (1 + 2k),

where we note that n = 2m−1 and m = 2k. We use Q7,BAL to denote sequence family Q7,LEC after the incorporation
of flipping factors. Thus the symbol balance of Family Q7,BAL is identical to that of Family A.



XII. CONCLUSIONS

The principal contribution of this paper is the construction of a family JNAV of sequences having period 10230, low
values of worst-case even and odd-correlation, good symbol balance, and the orthogonal-pairs property. The period
and the properties of Family JNAV, make JNAV well-suited to being used as the spreading code family employed in a
GNSS setting, to provide satellite-based accurate positioning, time and velocity information. As can be seen from
the entries in Table III, the family compares well with existing GNSS spreading code families, including having
worst-case even correlation magnitude that is lower by 4.5dB.

The JNAV family is constructed using a Select-Interleave-Flip (S-I-F) approach under which Z4-linear sequences
are interleaved using the Chinese Remainder Theorem and then selectively flipped in terms of polarity. Both selection
and flipping are guided by the availability of a closed-form expression for an exponential sum over Galois rings.
Sequence Family JNAV admits a simple, shift-register implementation.

It is shown that the same S-I-F approach can be made more generally, to yield low-correlation binary sequences
having period of the form 10(2m − 1) for m = 2 (mod 4) and 14(2m − 1) for m = 2, 4 (mod 6) having
asymptotic (nontrivial) even-correlation magnitudes upper bounded by 2.53

√
L and 2.67

√
L respectively, where L

is the sequence period.
By replacing the base Z4-linear sequence family with quaternary sequence Family A, it is possible to generate

using once again, the same S-I-F approach, low-correlation quaternary low-correlation sequence families having
period of the form 5(2m−1) for m = 2 (mod 4) and 7(2m−1) for m = 2, 4 (mod 6) and asymptotic (nontrivial)
even-correlation magnitudes upper bounded by 1.84

√
L and 2.04

√
L respectively. The quaternary sequence families

have symbol balance that is on par with that of Family A.
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APPENDIX

A. Galois Rings

a) Basic Irreducible Polynomial over Z4: For an integer m ≥ 1, we will use F2m to denote a finite field of
characteristic 2 and size 2m. Let Z4, Z2 denote the rings of integers modulo 4 and 2 respectively. Let µ : Z4 7→ Z2

denote the modulo-2 reduction map on Z4, i.e., µ(b) = b(mod 2), b ∈ Z4. Given a polynomial A(x) =
∑d

i=0Aix
i

over Z4, we define µ(A) to be the polynomial over F2 given by µ(A) =
∑d

i=0 µ(Ai)x
i. If A(x) ∈ Z4[x] is monic

and µ(A) is irreducible, it follows that A(x) is irreducible over Z4 and we will say that A(x) is a basic irreducible.
Let f(x) be a primitive (irreducible) polynomial over F2 of degree m ≥ 1. Let the polynomial F (x) over Z4 be

defined by

F (x2) = (−1)mf(x) f(−x), (82)

where on the right, we regard f as a polynomial over Z4 with {0, 1} coefficients. It is straightforward to verify
that µ(F ) = f and it follows therefore, that F (x) is a basic irreducible over Z4. This method of deriving a basic
irreducible polynomial over Z4 starting from a binary irreducible polynomial is known as Graeffe’s root-squaring
method.

https://ece.iisc.ac.in/~pvkece/


Example 1. Let f(x) = x10 + x3 + 1. It is known that f(x) is a primitive, binary polynomial of degree m = 10.
An application of (82) gives us

F (x2) = (x10 + 1)2 − (x3)2 = x20 + 2x10 + 3x6 + 1

so that

F (x) = x10 + 2x5 + 3x3 + 1.

As we have seen, µ(F ) = f . Thus x10 + 2x5 + 3x3 + 1 is an example of a basic irreducible polynomial.

b) Galois Ring Construction: Set R4m = Z4[x]/(F (x)), then R4m
∼= Z4[β], where β belongs to some extension

ring of Z4 and satisfies F (β) = 0. Clearly R4m contains 4m elements and every element z in R4m can be uniquely
expressed in the form

z =

m−1∑
i=0

ziβ
i, zi ∈ Z4.

It is also clear that R4m is a commutative ring with identity under the usual definitions of addition and multiplication.
Rings arising in this manner are Galois Rings (GR) [5].

The modulo-2 mapping µ is a ring homomorphism that maps the elements of Z4[x]/(F (x)) to the elements
of the finite field F2m := Z2[x]/(f(x)) where f(x) = F (x) (mod 2) is the binary primitive polynomial used to
derive the basic irreducible F (x). The finite field F2m

∼= F2[α], where α belongs to some extension field of F2

and satisfies f(α) = 0. Clearly, we may assume that the image of β in the GR under the map µ is the element
α = µ(β) in the finite field, and we may write α = β (mod 2). Then since f(α) = 0, α is a primitive element of
F2m and hence has order n, where n := 2m − 1. It can be verified using (82) that the element β in the GR also
has order n.

c) Teichmuller Set: Set
Tm = {0} ∪ {1, β, β2, · · · , βn−1}.

Since µ(βi) = αi, it follows that an element in Tm is uniquely defined by its reduction modulo 2. Every element
(x+ 2y), x, y ∈ Tm belongs to R4m . It can be verified that

x1 + 2y1 = x2 + 2y2 iff x1 = x2 and y1 = y2.

Thus every element z in R4m has a unique expression of the form

z = x+ 2y, x, y ∈ Tm.
The set Tm is commonly referred to as the set of Teichmuller representatives or simply as the Teichmuller set.
Given an element x ∈ Tm, any element of the form

y = x2m−1

(1 + 2θ),

satisfies y2 = x, but only one of them, namely x2m−1

, belongs to Tm. Keeping this in mind, given an element
x ∈ Tm, by

√
x we will mean the square root x2m−1

of x lying in Tm. If

(x1 + 2y1) + (x2 + 2y2) = x+ 2y, where x, y, xi, yi ∈ Tm,
then by raising both sides to the 2mth power, we see that

x = x1 + x2 + 2
√
x1x2,

and consequently that

2y = 2(y1 + y2 +
√
x1x2).

A simpler means of identifying x given x1, x2 is to simply note that x = x1 + x2 (mod 2).



d) Trace Function: The automorphisms of the finite field F2[α] are known to form a cyclic group of size m
under composition generated by the map:

σ : α 7→ α2.

Let σ : R4m 7→ R4m be defined by
σ(x+ 2y) = x2 + 2y2, x, y ∈ Tm.

It can be verified that σ is an automorphism of R4m . For b = b0 + 2b1, in Z4, b0, b1 ∈ F2,

σ(b0 + 2b1) = b20 + 2b21 = b0 + 2b1,

and therefore σ fixes Z4. The maps

σi : x+ 2y 7→ x2i + 2y2i , 0 ≤ i ≤ m− 1

represent the set of m automorphisms of R4m that fix Z4. The trace function Tm : R4m 7→ Z4 is defined by

Tm(x+ 2y) =

m−1∑
i=0

σi(x+ 2y) =

m−1∑
i=0

(x2i + 2y2i), x, y ∈ Tm.

It is straightforward to show that Tm(·) is linear over Z4, i.e., for x ∈ R4m , a, b ∈ Z4,

Tm(ax+ b) = aTm(x) + b.

It can be shown that Tm(·) takes on all values in Z4 equally often. The reduction modulo 2 of Tm(·) gives us the
binary trace function trm(·) : F2m 7→ F2 of the finite field defined by

trk(x) =

m−1∑
i=0

x2i , x ∈ F2m .

e) An Exponential Sum over Galois Rings: Define the exponential sum

Γm
(
[1 + 2γ]

)
:=

∑
x∈Tm

ıTm([1+2γ]x)

Lemma 2.

Γm(1 + 2γ) = ı−Tm(γ)Γm(1).

Proof:

Γm(1) =
∑
x∈Tm

ıTm(x).

Given x ∈ Tm, let y ∈ Tm be such that x = (y + γ + 2
√
yγ). Then as x varies over Tm, so does y. We can thus

write

Γm(1) =
∑
y∈Tm

ıTm(y+γ+2
√
yγ), = ıTm(γ)

∑
y∈Tm

ıTm(y[1+2γ]),

= ıTm(γ)Γm([1 + 2γ]).

�

Theorem 2 (Closed-Form Expression for Exponential Sum). [36]

Γm
(
[1 + 2γ]

)
= −(−(1 + ı))mı−Tm(γ),

= −2kık−Tm(γ), for m = 2k. (83)

Proof. From the theory of L-functions of exponential sums, see [35], we have that

Γm(1) =
∑
x∈Tm

ıTm(x) = −(Γ1(1))m = −(−[1 + ı])m,

since

Γ1(1) =
∑
x∈T1

ıT1(x) =
∑

x∈{0,1}

ıx = 1 + ı.

The result then follows from Lemma 2.
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