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Parameters of Interest

All codes are linear codes over Fq.

q field size

n Block length

k dimension

R = (k/n) = rate

dmin minimum distance

maximum number of erasures
t from which local recovery is desired

maximum number of code symbols
r contacted for recovery

of a single erased symbol
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Various Local Approaches to Multiple-Erasure Recovery

Approach Explanation

Each code symbol is protected
by a set of parity checks that includes

Availability a set of t orthogonal parity checks,
each of weight ≤ (r + 1)

Given a set of ≤ t erased code symbols,
Sequential Recovery there exists a parity check for

at least one code symbol, of weight ≤ (r + 1)
which does not include any of the other code symbols

For any given set of (t − 1) other erasures,
Selectable Recovery each code symbol is protected

by a parity check of weight ≤ (r + 1), that
does not include any of these other code symbols

Given a set of t erasures,
Cooperative Recovery there exists a set of r code symbols

using which one can recover from these t erasures

4 / 26



Codes with Locality For Multiple Erasures
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Sequential Recovery Results

A tight upper bound on rate R for any (r ≥ 3, t ≥ 2)

Matching binary-code construction
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Codes with Locality for Sequential Recovery

Definition

An [n, k] code over Fq is a

code with sequential recovery from t erasures having locality r

if for any set of s ≤ t erased symbols, {cσ1 , ..., cσs}, there exists a
codeword h in the dual code, of Hamming weight ≤ r + 1, such that
supp(h) ∩ {σ1, ..., σs} = 1.

We denote the above defined codes as (n, k , r , t)seq codes.

N. Prakash, V. Lalitha, P. Vijay Kumar, “Codes with Locality for Two Erasures,” ISIT 2014.
S. B. Balaji, Ganesh R. Kini and PVK, “A Tight Rate Bound and a Matching Construction for
Locally Recoverable Codes with Sequential Recovery From Any Number of Multiple Erasures,”
arXiv:1611.08561v6 [cs.IT] 9 Feb 2017.
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Motivation:
Improved Rate (in comparison with availability)
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The (Tight) Upper Bound on Rate

Theorem

Rate Bound: Let C be an (n, k , r , t)seq code over a field Fq. Let r ≥ 3.
Then

k

n
≤ r

t
2

r
t
2 + 2

∑ t
2
−1

i=0 r i
for t an even integer, (1)

k

n
≤ r s

r s + 2
∑s−1

i=1 r
i + 1

for t an odd integer, (2)

where s = t+1
2 .
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Bound for t = 2, 3, 4, 5, 6, 7

t Bound t Bound

2 r
r+2 3 r2

r2+2r+1

4 r2

r2+2r+2
5 r3

r3+2r2+2r+1

6 r3

r3+2r2+2r+2
7 r4

r4+2r3+2r2+2r+1

10 / 26



Rawat et. al. Construction for Codes with Sequential
Recovery

1 r+1-regular bipartite graph, girth
≥ t + 1 a

2 edge are code symbols, node are parity
checks,

3 Rate is r−1
r+1 + 1

n .

4 Rate meets our rate bound when a
Moore graph of degree r + 1 and girth
t + 1 exists.

5 Such Moore graphs are shown to not
exist for t /∈ {2, 3, 4, 5, 7, 11} for any
r ≥ 2.

6 Thus the construction is not
rate-optimal in most cases.

a
A. Rawat, A. Mazumdar, and S. Vishwanath, “On cooperative local repair in distributed storage, ” in

Information Sciences and Systems (CISS), 2014 48th Annual Conference on, 2014, pp. 1?5.
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Conjecture on Rate

The following conjecture on the rate of an (n, k , r , t)seq code was given by
Song2 et al.

k
n ≤

1
1+

∑m
i=1

ai
r i

,

ai ≥ 0, ai ∈ Z,
∑m

i=1 ai = t, m = dlogr (k)e.

Our rate bound verifies this general conjecture,

More specific bounds were conjectured for t = 5, 6

The t = 5 bound was verified to be correct, the t = 6 case, the
conjecture turned out to be incorrect .

2Song, Cai, Yuen, “On sequential locally repairable codes,” arXiv preprint
arXiv:1610.09767, 2016.
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Proof (restrict to a sub matrix of Hfull)

Let Hfull be the parity-check matrix of the [n, k , r , t]seq code.

Hfull ⇒ Rowspace (Hfull)
⇓

restrict to subspace S spanned by rows of wH(·) ≤ (r + 1)
⇓

select basis with wH(·) ≤ (r + 1) for S : {ht1, ht2, · · · htm}
⇓

Set H =


ht1
ht2
...
htm

 .
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Proof (choose columns of low Hamming weight)

H =


ht1
ht2
...
htm

 ⇒ (each row of H has Hamming weight ≤ (r + 1))

Our interest is in maximizing rate

i.e., maximizing n for given redundancy m

Hence choose as many columns of low Hamming weight as possible
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Proof
(after some work, for t even, arrive at form below )

H =



D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

...
. . .

...
...

... E
0 0 0 0 . . . A t

2
−2 0 0

0 0 0 0 . . . D t
2
−2 A t

2
−1 0

0 0 0 0 . . . 0 D t
2
−1

0 0 0 0 . . . 0 0 C


{Di} are diagonal and {Ai} have column weight 1
each row of {Ai} has Hamming weight ≤ r
{C} has column weight 2 and {E} has column weight ≥ 3

this form leads to the bound
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Proof
(if equality holds in the bound, we must have:)

H =



D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . A t

2
−2 0 0

0 0 0 0 . . . D t
2
−2 A t

2
−1 0

0 0 0 0 . . . 0 D t
2
−1 C


each row of {Ai} has Hamming weight = r

there is no matrix E
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Example: PC Matrix of Rate-Optimal (r = 3, t = 2) Code
(Regular Graph)

H = [D0 | A1]

=



1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 1


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Regular Graph Interpretation of (r = 3, t = 2)
Rate-Optimal Code

Edges correspond to symbols

Nodes correspond to parity-symbols

Thus this code is an [n = 15, k = 9, r = 3, t = 2] code

A regular graph for any r will lead to a rate-optimal (t = 2) code
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Rate-Optimal Product Code (t = 3, r = 4)

 c11 c12 c13  c14  c15 

 c21  c22  c23  c24  c25 

 c31  c32  c33  c34  c35 

 c41  c42  c43  c44  c45 

 c51  c52  c53  c54  c55 

Figure: Code array.

Figure: Graphical representation.

Thus this code is an [n = 25, k = 16, r = 4, t = 3] code

A 2D product code for any r will lead to a rate-optimal (t = 3) code
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Product Code: Parity Check Matrix

H =



1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


(this matrix also conforms to the form

H =

[
D0 A1

0 D1

]
,

in the proof of the theorem)
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A Binary Rate-Optimal Code (t = 4, r = 3)
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Regenerating Codes
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Regenerating Codes - Formal Definition

Parameters: ( (n, k , d), (α, β), B, Fq )

1 

k+1 

k 

2 

n 

Data 
Collector 

α 

α 

α 

α capacity 
nodes 

1 

d+1 

2 

n 

1’ 

3 

β 

β 

β 

α capacity 
nodes 

Data to be recovered by connecting to any k of n nodes

Nodes to be repaired by connecting to any d nodes, downloading β
symbols from each node; (dβ << file size B )
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A Recent High-Rate MSR Code Construction with
d < (n − 1)

x
y

Z = (0,0,0)

Z = (1,1,1)

Z

A1

A2
⇔

x
y

Z = (0,0,0)

Z = (1,1,1)

Z

B1

B2

A simple interpretation as being obtained through a pairwise, symbol transformation from
a layered RS code (left)
... followed by an RS code across symbols within a node
extends the Ye-Barg construction...

Min Ye, Alexander Barg, “Explicit constructions of optimal-access MDS codes with nearly
optimal sub-packetization,” arXiv:1605.08630v1, 27 May 2016.
Birenjith Sasidharan, Myna Vajha, P. Vijay Kumar, “An Explicit, Coupled-Layer
Construction of a High-Rate MSR Code with Low Sub-Packetization Level, Small Field
Size and d < (n − 1),” arXiv:1701.07447v1, 25 Jan 2017.
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A Recent High-Rate MSR Code Construction with
d < (n − 1)

x
y

Z = (0,0,0)

Z = (1,1,1)

Z

A1

A2

Rate as close to 1 as desired

Field size comparable to that of an RS
code of same block length

Sub-packetization level comparable to that
of the Ye-Barg construction

d < (n − 1)

Explicit with uniform, all-symbol repair

Birenjith Sasidharan, Myna Vajha, P. Vijay Kumar, “An Explicit, Coupled-Layer
Construction of a High-Rate MSR Code with Low Sub-Packetization Level, Small Field
Size and d < (n − 1),” arXiv:1701.07447v1, 25 Jan 2017.
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Thanks!
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