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Outline of the Talk

1 On Partial Maximum Recoverability
I a simple, high-rate construction
I some general comments

2 Hierarchical Codes with Locality
I dmin bound
I Constructions
I an example
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Codes with All-Symbol Locality

The parity-check matrix of a code with all-symbol locality linear code is of
the form:

Local&Parity&&
Checks&

Global&&
Parity&&
Checks&

S1&

S2&

S3&

S4&
H&=&&

Si is the support of the ith local code.
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Codes with All-Symbol Locality
A maximal recoverable (MR) code is an all-symbol locality code which
becomes an MDS code when one coordinate in every local code is
punctured:

Local&Parity&&
Checks&

Global&&
Parity&&
Checks&

S1&

S2&

S3&

S4&
H&=&&

(puncture&code&in&these&4&coordinates)&

(the dual code is shortened).
7 / 27



Codes with All-Symbol Locality
A partial, maximal recoverable (PMR) code is an all-symbol locality
code which becomes an MDS code when one particular coordinate in every
local code is punctured:

Local&Parity&&
Checks&

Global&&
Parity&&
Checks&

S1&

S2&

S3&

S4&
H&=&&

(puncture&code&in&these&4&coordinates)&

(the dual code is shortened).
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Canonical Form of Parity-Check Matrix of a PMR Code

The parity-check matrix of a PMR code can be put in the form:

H =

 Im F

[0] HMDS︸ ︷︷ ︸
(∆×(n−m))

 ,
where

1 n is the overall block length of the code

2 there are m local codes

3 the local codes have length ≤ (r + 1)

4 ∆ is the number of global parities

5 HMDS is the parity-check matrix of an MDS code

6 the rows of F impose locality and have Hamming weight at most r .
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Minimum Distance Bound

H =

 Im F

[0] HMDS︸ ︷︷ ︸
(∆×(n−m))

 ,
The minimum distance is given by:

dmin ≤ (n − k + 1)−
(
dk
r
e − 1

)
= ∆ + b∆

r
c+ 2.

Hence

dmin ≤
{

∆ + 2, for ∆ ≤ (r − 1)
∆ + 3, for r ≤ ∆ ≤ 2r − 1, etc.
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A Simple, High-Rate Construction
The code C with parity-check matrix

H =


Im F =

 xT1
. . .

xTm


[0] HMDS︸ ︷︷ ︸

(∆×(n−m))

 ,
where

∆ ≤ (r − 1) and

[
x t1 · · · x tm
HMDS

]
is a Vandermonde matrix
achieves the bound:

dmin ≤ ∆ + 2,

with equality.
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An Observation

The code C with parity-check matrix

H =

[
F

HMDS

]
,

also defines a code with all-symbol locality.

However, for the code C with parity-check matrix

H =

[
Im F

[0] HMDS

]
,

to be optimum need that if

ν := dim
(

Row(F ))
⋂

Row(HMDS )
)
,

then need that when ∆ = ar + b,

ν ≤ ba + b − ν
r

c, i.e.,

ν = 0, (a + b ≤ r).
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Parity-Splitting Formulation of Tamo-Barg Constructionn
Presented in polynomial form as follows:

f (x) =
r−1∑
i=0

k
r
−1∑

j=0

aijx
i+j(r+1)

Can be shown to have parity splitting form:

H =

[
F

HMDS

]

=



α1 · · · α5

α6 · · · α10

α11 · · · α15

α1 · · · α5 α6 · · · α10 α11 · · · α15

α2
1 · · · α2

5 α2
6 · · · α2

10 α2
11 · · · α2

15
...

...
...

...
...

...
...

...
...

α8
1 · · · α8

5 α8
6 · · · α8

10 α8
11 · · · α8

15


.
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Parity-Splitting Formulation of Tamo-Barg Constructionn

H =

[
F

HMDS

]

=



θ1 · · · θ5

θ6 · · · θ10

θ11 · · · θ15

θ1 · · · θ5 θ6 · · · θ10 θ11 · · · θ15

θ2
1 · · · θ2

5 θ2
6 · · · θ2

10 θ2
11 · · · θ2

15
...

...
...

...
...

...
...

...
...

θ8
1 · · · θ8

5 θ8
6 · · · θ8

10 θ8
11 · · · θ8

15


where the ordering is according to a cyclic subgroup and its cosets:

(θ1 · · · θ15) = (1, α3, · · · , α12)︸ ︷︷ ︸
subgroup

, α(1, α3, · · · , α12)︸ ︷︷ ︸
first coset

, α2(1, α3, · · · , α12)︸ ︷︷ ︸
second coset
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Parity-Splitting Formulation of Tamo-Barg Constructionn

H =

[
F

HMDS

]

=



θ1 · · · θ5

θ6 · · · θ10

θ11 · · · θ15

θ1 · · · θ5 θ6 · · · θ10 θ11 · · · θ15

θ2
1 · · · θ2

5 θ2
6 · · · θ2

10 θ2
11 · · · θ2

15
...

...
...

...
...

...
...

...
...

θ8
1 · · · θ8

5 θ8
6 · · · θ8

10 θ8
11 · · · θ8

15


However, here,

ν := dim
(

Row(F ))
⋂

Row(HMDS )
)
,

≥ 1,

and this particular construction cannot be used.
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Constructions of Maximum Recoverable Codes

(deleted&cosets)

1 Start with a Tamo-Barg Construction for all-symbol (r = 2) locality

2 Retain only a small number of cosets of a cyclic group so as to obtain
the desired MR property

3 Specific instances of this construction, beats other constructions in
terms of field size
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Codes with Hierarchical Locality

Birenjith Sasidharan, Gaurav Kumar Agarwal, P. Vijay Kumar, “Codes With Hierarchical

Locality,” submitted to ISIT 2015, see also arXiv:1501.06683 [cs.IT]
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Codes with Locality do not Scale

[4,3,2]' [4,3,2]'[4,3,2]' [4,3,2]' [4,3,2]' [4,3,2]'

[24,14,7]'

d ≤ (n − k + 1)−
(
dk
r
e − 1

)
(δ − 1)
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Codes with Hierarchical Locality

Each symbol of [n, k , d ]-code is protected by a [n1, r1, δ1]-code

Each symbol of [n1, r1, δ1]-code is protected by a [n2, r2, δ2]-code

d ≤ n − k + 1−
(⌈

k

r2

⌉
− 1

)
(δ2 − 1)︸ ︷︷ ︸

Bound for codes with locality

−
(⌈

k

r1

⌉
− 1

)
(δ1 − δ2)︸ ︷︷ ︸

Extra loss
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Bound on Minimum Distance

Find a
(k − 1)-dimensional
punctured code Cs with
a large support.

Then,
dmin ≤ n − Supp(Cs).

Algorithm used to identify Cs
START

Yes

Yes

EXIT
No

No
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All-symbol Local Optimal Construction: An Example

Need to satisfy a divisibility condition n2 | n1 | n
Example: [n, k] = [24, 14], [n1, r1] = [12, 8], [n2, r2] = [4, 3].

1 Choose F52 .

2 Identify the subgroup chain:
H2 ⊂ H1 ⊂ H0 = F∗

52 s.t.
|H2| = 4, |H1| = 12, |H0| = 24.

3 Hi = 〈βi 〉, i = 0, 1, 2

4 The subgroups lead to a tree of
cosets.
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Example Contd.

5 Construct a polynomial for every vertex of the tree of cosets. These polynomials
are called lifting polynomials.

6 Polynomial E1(X ) corresponding to H1 evaluates to 1 at points from H1, and zero
at points from its siblings.

Polynomials for the first level of tree:

E1(X ) =

(
X 12 − β12

0

1− β12
0

)
,

E2(X ) =

(
X 12 − 1

β12
0 − 1

)
(can find F1, . . . ,F6 for the second level)
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Example Contd.

7 Message polynomials are associated with the leaves of the tree of cosets.

8 They are lifted one-level up in the tree using the lifting polynonials. Coefficients
are precoded to adjust the dimension.

9 Lifting is continued upto the root of the tree, resulting in a polynomial c0(X )
associated with the root of the tree.

10 Evaluations of c0(X ) at H0 give rise to a codeword.
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Exponents of Polynomials Develop Gaps that Enforce
Locality

�A3 2 1 0 ��ZZ11 ��ZZ10 9 8 �A7 6 5 4 �A3 2 1 0

��ZZ23 ��ZZ22 ��ZZ21 ��ZZ20 ��ZZ19 18 17 16 ��ZZ15 14 13 12

��ZZ11 ��ZZ10 9 8 �A7 6 5 4 �A3 2 1 0

Figure: Illustration of the behaviour of exponents in c0(X ).
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Information-symbol Local Optimal Construction: Pyramid
Codes

[n, k] = [15, 8], [n1, r1] = [7, 4], [n2, r2] = [3, 2].

δ2 = 2, δ1 = 3, d = 4. (optimal dmin)

a b a+b

c d c+d
a+2b+c+2d

p q p+q

r s r+s
p+2q+r+2s

a+3b+c+3d+

p+3q+r+3s
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Pyramid Codes (contd.)

Consider an MDS code with parameter [k + d − 1, k, d ] = [11, 8, 4].

Gmds = [Ik×k | Ak×(d−1)] = [I8×8 | A8×3].

G s
mds =

[
I8×8

B4×2

C4×2
D8×1

]
,

G ss
mds =

 I8×8

E2×1

F2×1
G4×1

H2×1

J2×1
K4×1

D8×1

 ,

Glocal =

 I8×8

E2×1

F2×1
G4×1

H2×1

J2×1
K4×1

D8×1

 ,
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