
# Perceptual Distance and Visual Search

Data Science - Visual Neuroscience Lecture 1

## Physical distance versus perceptual distance

- ▶ Why are we (as yet) better at vision than machines?
- ▶ Sophisticated representation of objects.  
“Pixel distance” very different from perceptual distance
- ▶ In this module: Study experimental data that attempts to quantify perceptual distance

# Measuring perceptual distance



Ideas?

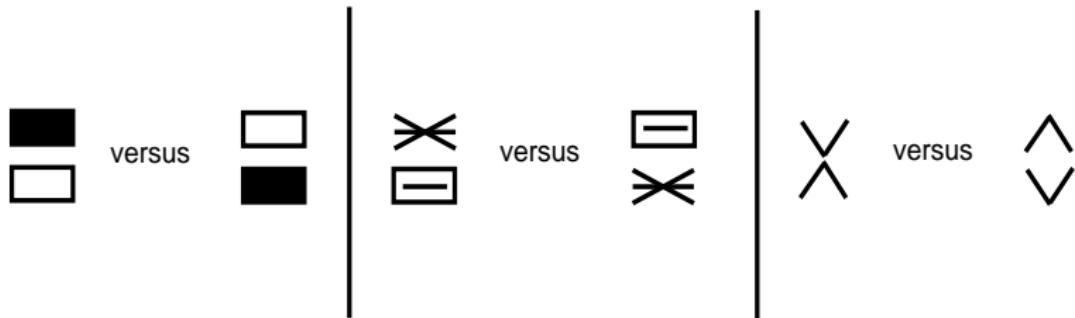
## Find the odd image - 1



## Find the odd image - 2

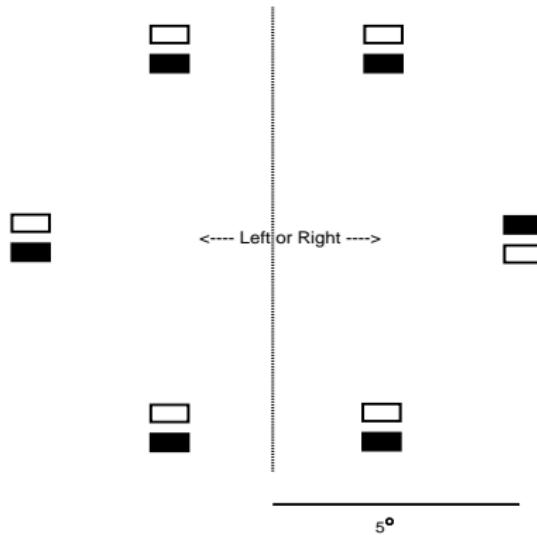


## Find the odd image - 3




# A measure of perceptual distance

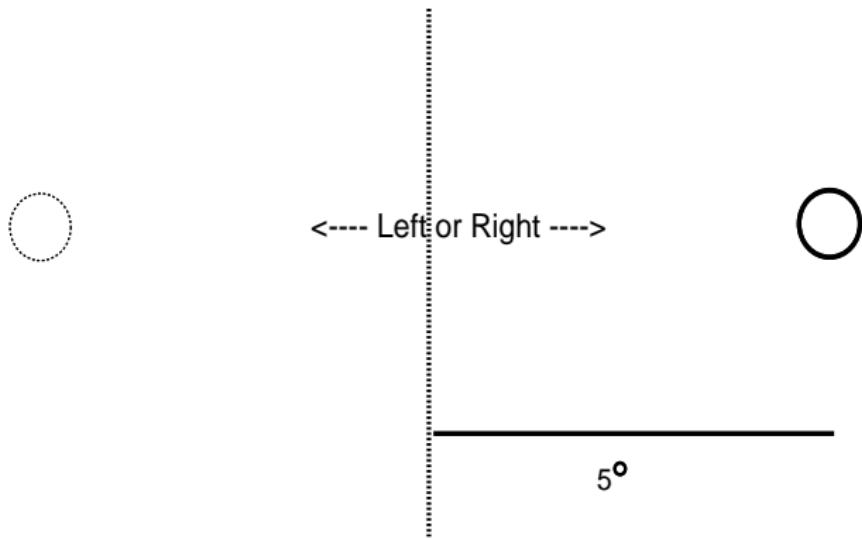
## Hypothesis


*Visual search performance depends on the perceptual distance between the two images. Closer the two images in perceptual distance, the longer it takes to identify the oddball image. More specifically:*

$$\text{Proposed Perceptual Distance} \propto \frac{1}{(\text{Search Time})^k}?$$



# A reaction time study on humans (Arun and Olson 2010)


- ▶ Study conducted on six subjects
- ▶ Identify the location of the oddball and hit a key to tell left or right



- ▶ Image displayed until reaction (which if correct, valid trial), or until 5 seconds (aborted)

$RT(i,j) = \text{average reaction time}$   
Data averaged over both *oddball i among distracters j*

## Baseline reaction time



- ▶  $RT_b$  = baseline reaction time
- ▶  $s(i,j) = RT(i,j) - RT_b$
- ▶ Perceptual distance between  $i$  and  $j$  is  $\propto 1/s(i,j)$
- ▶  $RT_b = 328ms$ .

# Image pairs on which search time data was collected (Sripati and Olson 2010)

## Set 1: Variable Part Identity



Color



Pattern



Chevron

## Set 2: Variable Inter-Chevron Distance



Far



Near

## Set 3: Variable Chevron Size



Small



Medium



Large

## Set 4: Variable Inter-Contour Distance



Far



Middle

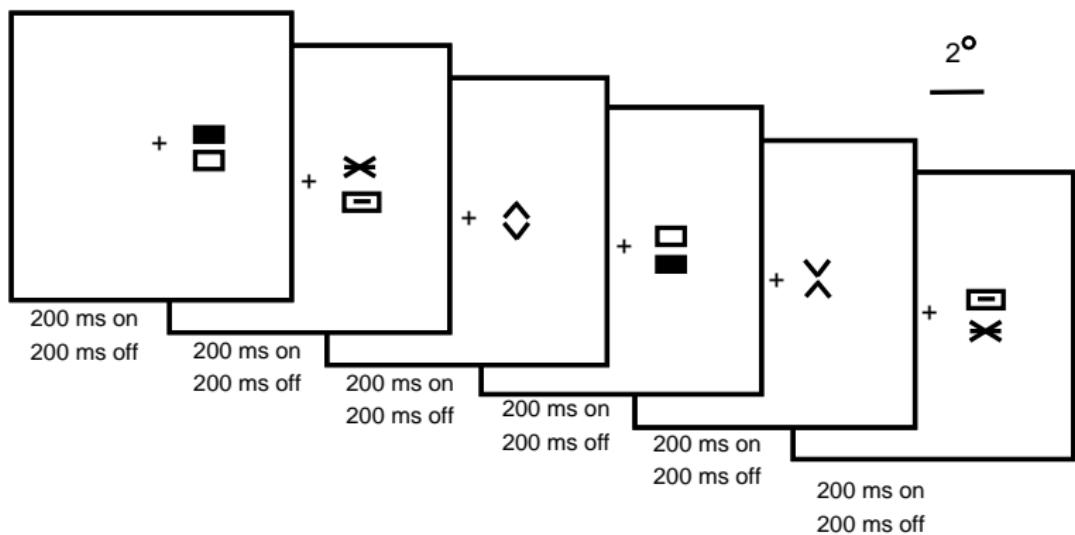


Near

## A direct view into the brain of rhesus macaques

- ▶ Try to nail the responses in the brain, and see how different they are.

## Where to measure?


- ▶ The case for measuring in IT (Sripati and Olson 2010)
- ▶ Neurons in IT, unlike those in low-order visual areas, have receptive fields large enough to capture an entire image.
- ▶ Sensitive to global arrangement of elements within the image.
- ▶ Studies indicate that population activity in IT discriminates some images better than others. Studies also indicate that if a pair is well-discriminated by population activity in IT, then humans tend to characterise them as dissimilar.
- ▶ Perhaps then population activity in IT should predict human search efficiency.

## Experimental procedure on rhesus macaques and recording (done by Arun and Olson)

- ▶ Cleared by CMU institutional animal care and use committee
- ▶ Two macaques were surgically fitted with:
  - ▶ a cranial implant for neuronal activity recording;
  - ▶ a scleral search coil for recording eye movements.
- ▶ Data was collected over several days. Before each day's experiment, an electrode was inserted so that the tip was 1 cm above the inferotemporal cortex.
- ▶ The electrodes were pushed, reproducably, along tracks forming a square grid with 1 mm spacing.
- ▶ Neuronal activity was recorded. Individual neurons' action potentials then isolated using a commercially available tool (Plexon).

# A direct view into the brain of rhesus macaques

- ▶ Two macaques were trained to fixate on the + while a series of stimuli appeared one after another.



- ▶ Images were randomly interleaved. Neuronal activity recorded (inferotemporal cortex) over several 2 second rounds.

## The neuronal data

- ▶ Inferotemporal cortex - gross object features emerge here
- ▶ Firing rates of  $N = 174$  neurons in response to these six images
- ▶ Data collected in a similar manner for a total of 24 images
- ▶ For each image  $i$ , the neuronal response is summarized by the firing rate vector  $(\lambda^i(n), 1 \leq n \leq N)$ .

$$\text{Image } i \mapsto \lambda^i = \begin{pmatrix} \lambda^i(1) \\ \lambda^i(2) \\ \vdots \\ \lambda^i(N) \end{pmatrix}$$

## The main question

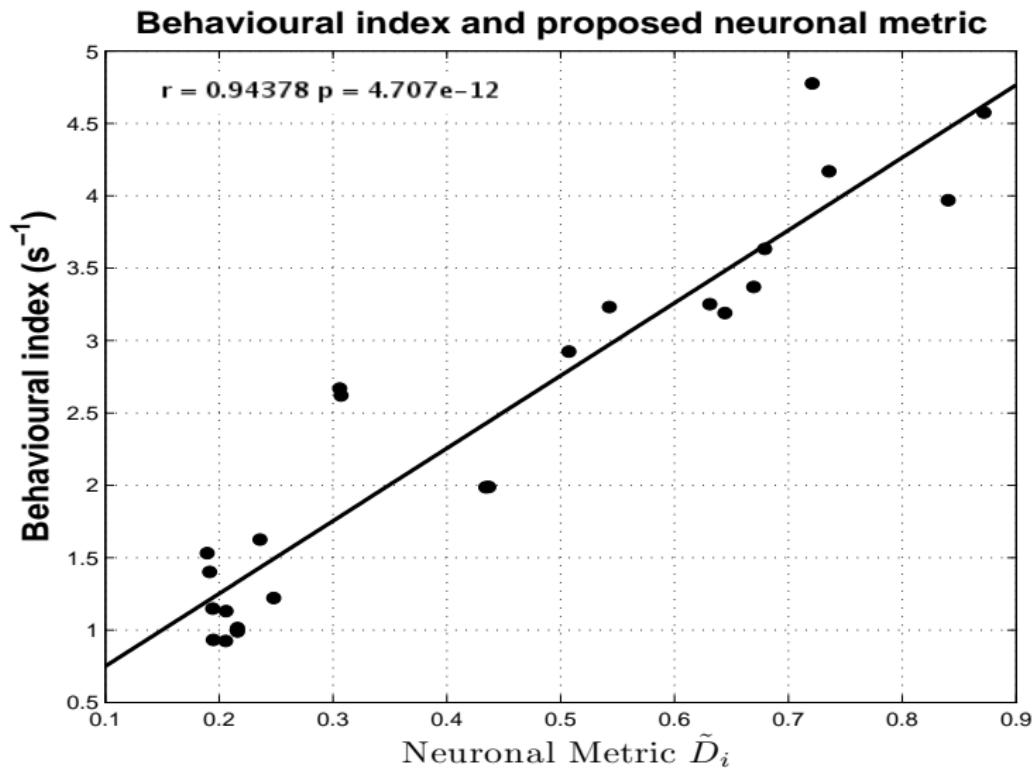
- ▶ For the pair  $(i, j)$ , perceptual distance ought to be a function of how “different”  $\lambda^i$  and  $\lambda^j$  are.
- ▶ What function?
- ▶ How does it relate to reaction time?

## A model grounded in a theory

- ▶ What would the prefrontal cortex do if it got observations from the human analogue of the inferotemporal cortex and could control the eye?

## Aspects of search

- ▶ Find in the shortest possible time. Cost = delay.
- ▶ Local focus. You could choose where you wanted to look next.
- ▶ Two types of pictures. But you didn't "know" either. Learnt which is which on the fly.
- ▶ But you learnt just enough to tell a picture in location 1 was same as or different from the picture in location 2.
- ▶ When you changed focus, you often chose a location nearer to the current location.
- ▶ You waited until you were sure about the oddball location.


## A model for search - sequential hypothesis testing

- ▶ Hypothesis  $h = (\ell, i, j)$ : The oddball location is  $\ell$  and its type  $i$  among distracters  $j$ . Ground truth.
- ▶ Divide time into slots.
- ▶ Control: Given observations and decisions in all previous slots (history),
  - ▶ decide to stop and declare the oddball, or
  - ▶ decide to continue, and direct the eye to focus on location  $b$ , one of the six locations.
- ▶ Observation: If the object in location  $b$  is  $k$ , then  $N$  Poisson point processes with rates  $(\lambda^k(n), 1 \leq n \leq N)$ .
- ▶ Policy  $\pi$ : For each time slot, given history, a prescription for action.  
To stop or not to stop?  
If continue, where to look?  
If stop, what to decide?

## Performance

- ▶ For each ground truth  $h$ , your policy shall make an error with probability at most  $\varepsilon$ .
- ▶ What is the expected time to stop for a fixed positive  $\varepsilon$ ?
- ▶ The average search delay is the average over all hypotheses  $h$  with  $i$  as oddball and  $j$  as distracter.
- ▶ What function of  $\lambda^i$  and  $\lambda^j$ ?  
Difficult to evaluate. We will do some asymptotics as  $\varepsilon \rightarrow 0$  to get the following.

We will process data to get this correlation plot



## What we will learn in this module

- ▶ Hypothesis testing
- ▶ Hypothesis testing with a stopping criterion
- ▶ Data processing inequality, and relative entropy
- ▶ A brief view into asymptotic analysis
- ▶ Testing for a distribution - Kolmogorov-Smirnoff test
- ▶ ANOVA and variants