
Perceptual Distance and Visual Search

Data Science - Visual Neuroscience Lecture 2



Measuring perceptual distance

versusversus versus



Find the odd image



A measure of perceptual distance

Hypothesis
Visual search performance depends on the perceptual distance between

the two images. Closer the two images in perceptual distance, the longer

it takes to identify the oddball image. More specifically:

Proposed Perceptual Distance ∝
1

(Search Time)k
?

versusversus versus



From the IT of the macaques

◮ Inferotemporal cortex - gross object features emerge here

◮ Firing rates of N = 174 neurons in response to these six images

◮ Data collected in a similar manner for a total of 24 images

◮ For each image i , the neuronal response is summarized by the firing
rate vector (λi (n), 1 ≤ n ≤ N).
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The main question

◮ For the pair (i , j), perceptual distance ought to be a function of how
“different” λi and λj are.

◮ What function?

◮ How does it relate to reaction time?



A model grounded in a theory

◮ What would the prefrontal cortex do if it got observations from the
human analogue of the inferotemporal cortex and could control the
eye?



A model for search - sequential hypothesis testing

◮ Hypothesis h = (ℓ, i , j): The oddball location is ℓ and its type i

among distracters j . Ground truth.

◮ Divide time into slots.

◮ Control: Given observations and decisions in all previous slots
(history),

◮ decide to stop and declare the oddball, or
◮ decide to continue, and direct the eye to focus on location b, one of

the six locations.

◮ Observation: If the object in location b is k , then N Poisson point
processes with rates (λk(n), 1 ≤ n ≤ N).

◮ Policy π: For each time slot, given history, a prescription for action.
To stop or not to stop?
If continue, where to look?
If stop, what to decide?



Performance

◮ For each ground truth h, your policy shall make an error with
probability at most ε.

◮ What is the expected time to stop for a fixed positive ε?

◮ The average search delay is the average over all hypotheses h with i

as oddball and j as distracter.

◮ What function of λi and λj?
Difficult to evaluate. We will do some asymptotics as ε → 0 to get
the following.



We will process data to get this correlation plot
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What we will learn in this module

◮ Hypothesis testing

◮ Hypothesis testing with a stopping criterion

◮ Data processing inequality, and relative entropy

◮ A brief view into asymptotic analysis

◮ Testing for a distribution - Kolmogorov-Smirnoff test

◮ ANOVA and variants



A much simplified hypothesis testing problem

◮ Suppose only two states of nature.

◮ Either the picture is

or the picture is

◮ Call the first H0 and the second H1.

◮ You get to look at it for one second. You have to decide if H0 or H1.

◮ Limitation. You have only one neuron. N = 1.

◮ If the true state of nature were H0, the neuron fires at rate λ0.
If the true state is H1, the neuron fires at rate λ1.

◮ Observe X spikes. If you see X = 5 spikes, which image?



Poisson point process of rate λ

◮ This is an often used simplified model for spike trains.

0
X X X [ ] [ ]

A B

◮ Properties:
◮ If A and B are two disjoint sets, then the number of points XA and

XB in A and B are independent random variables.
◮ If A has size (length) m(A), then the expected number of points

E [XA] = m(A).

◮ Poisson point process of rate λ: Expected number of points in an
interval of length 1 is λ.

◮ This suffices to describe the process completely. We can deduce that
the number of points X in [0, 1] has the Poisson distribution:

Pr{X = k} =
λke−λ

k!
, k ≥ 0.

◮ Proof: Binomial converges to the Poisson distribution when scaled
appropriately.



The distributions under the two hypothesis

◮ When the picture is

X has distribution Poisson(λ0),

Pr{X = k |H0} = p0(k) = (λ0)
ke−λ0/k!.

◮ Similarly, when the picture is

X has distribution Poisson(λ1),

Pr{X = k |H1} = p1(k) = (λ1)
ke−λ1/k!.

◮ What if you have N neurons?



Decision rule, performance criterion

◮ Decision rule: δ : {0, 1, 2, . . .} → {H0,H1}

0 4 51 2 3

Decide H0 here
Decide H1 outside

◮ Partition observation space into Γ0 (decide H0) and Γ1 (decide H1).

◮ Performance criterion: Probability of error

◮ Assume each hypothesis is equally likely. Then

Pr{Error} =
1

2
Pr {δ(X ) = H1|H0}+

1

2
Pr {δ(X ) = H0|H1} .

◮ Choose the decision rule that minimises probability of error.



Likelihood ratio test

◮ Fact: Assume H0 and H1 are equally likely. The optimal decision
rule that minimises the probability of error is the following.

δ(x) =







H1 if p1(x) > p0(x)
Either if p1(x) = p0(x)
H0 otherwise.

◮ Proof: Think of δ(x) ∈ [0, 1] as a probability assignment for a
randomised decision:

Pr{error} =
1

2

∑

x≥0

p0(x)δ(x) dx +
1

2

∑

x≥0

p1(x)[1− δ(x)] dx

=
1

2
+

1

2

∑

x≥0

[p0(x)− p1(x)] δ(x) dx .

For each x , choose δ(x) to make the integrand as small as possible.

◮ Same as p1(x)
p0(x)

being compared with 1,

or equivalently, log p1(x)
p0(x)

being compared with 0.



Relative entropy

◮ Working with the log. Suppose we have observations in two slots,
say x1, x2.

Log likelihood ratio = log p1(x1)
p0(x1)

+ log p1(x2)
p0(x2)

is additive in the

observations.

◮ Expectation of the log likelihood:

E0

[

log
p1(X )

p0(X )

]

and E1

[

log
p1(X )

p0(X )

]

◮ Relative entropy of p with respect to q, denoted D(p||q), is defined
as

D(p||q) = Ep

[

log
p(X )

q(X )

]

=
∑

x≥0

p(x) log
p(x)

q(x)
.

◮ Fact: D(p||q) ≥ 0 with equality if and only if p = q.
A measure of how far apart p and q are from each other.
Asymmetric!



Proof: D(p||q) ≥ 0 with equality if and only if p = q

◮ This is the same as showing −D(p||q) =
∑

x≥0 p(x) log
q(x)
p(x) ≤ 0.

◮ A useful inequality: log u ≤ u − 1 for all u ≥ 0 with equality if and
only if u = 1. Natural logarithm.

◮ Substitute, and be a little more careful:

−D(p||q) =
∑

x:p(x)>0

p(x) log
q(x)

p(x)

≤
∑

x:p(x)>0

p(x)

(

q(x)

p(x)
− 1

)

=
∑

x:p(x)>0

(q(x)− p(x))

= Q(supp(P)) − 1

≤ 0.

◮ Condition for equality is easy now.



A data processing inequality
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◮ Observe X , test for H0 versus H1 on the left.
Process X . Now keep only Y . Test for H0 versus H1 on the right.

◮ A = Z+. y = f (x) = 1{x ≥ 20}. What is the alphabet B? q0? q1?

◮ Fact: The data processing inequality D(p0||p1) ≥ D(q0||q1) holds.



Proof of data processing inequality

◮ LHS =
∑

x≥0 p0(x) log
p0(x)
p1(x)

, RHS =
∑

y∈B q0(y) log
q0(y)
q1(y)

.

◮ Fix y . Take f −1(y) = {x ≥ 0|f (x) = y}.
q0(y) =

∑

x∈f −1(y) p0(x).

◮ Focus on this y and the corresponding terms on the LHS.

◮ Claim:
∑

i ai log
ai
bi

≥ asum log asum
bsum

=
∑

i ai log
asum
bsum

.

◮ This is the same as

∑

i

ai

[

log
ai

bi
− log

asum

bsum

]

≥ 0

∑

i

ai log
ai/asum
bi/bsum

≥ 0

∑

i

(ai/asum) log
ai/asum
bi/bsum

≥ 0.

This holds because the left side is a relative entropy.



Hypothesis testing with a stopping criterion: policy

◮ In the one sample likelihood ratio test, probability of error is
whatever you get.

◮ What if we want a target probability of error?

◮ Two approaches:
Up front decide on how many slots to view. Fixed sample size.
Continue to view until you meet target error probability criterion:
policy

◮ Policy π: at the beginning of each slot, given past observations and
actions,

◮ decide to stop and declare H0 or H1

◮ decide to continue.
◮ Can think of π = (π1, π2, . . .), where
◮ (a1, x1, a2, x2, . . . , at−1, xt−1) 7→ πt(· · · ) = at ∈ {stop, continue},

and
◮ when stop, δ(· · · ) ∈ {H0,H1}.

◮ Notation: Pπ
0 (Event) = Pr{Event |H0, policy is π}.



Hypothesis testing with a stopping criterion: performance

criteria

◮ Performance criterion 1: We say that a policy π is ε-admissible if
both

Pπ
0 {δ(· · · ) 6= H0} ≤ ε and Pπ

1 {δ(· · · ) 6= H1} ≤ ε.

◮ Performance criterion 2: Let τ be the stopping time

τ := min{t ≥ 1|πt(· · · ) = stop}.

Expected stopping times: Eπ
0 [τ ],E

π
1 [τ ], (E

π
0 [τ ] + Eπ

1 [τ ])/2.

◮ Minimise expected time to stop among all ε-admissible policies.



Data processing inequality again, and a homework
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◮ Consider Pπ
0 and Pπ

1 . Similarly for Q.
Let x = (a1, x1, a2, x2, . . . , aτ−1, xτ−1, aτ = stop, δ).
Let y = δ.

◮ The data processing inequality is D(Pπ
0 ||P

π
1 ) ≥ D(Qπ

0 ||Q
π
1 ).

If π is ε-admissible, what happens to the right-hand side as ε → 0.


